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The gravitational quasi-normal frequencies of both stationary and rotating black
holes are calculated by constructing exact eigensolutions to the radiative boundary-
value problem of Chandrasekhar and Detweiler. The method is that employed
by Jaffé in his determination of the electronic spectra of hydrogen molecule ion
in 1934, and analytic representations of the quasi-normal mode wave functions
are presented here for the first time. Numerical solution of Jaffé’s characteristic
equation indicates that for each l-pole there is an infinite number of damped
Schwarzschild quasi-normal modes. The real parts of the corresponding frequen-
cies are bounded, but the imaginary parts are not. Figures are presented that
illustrate the trajectories the five least-damped of these frequencies trace in the
complex frequency plane as the angular momentum of the black hole increases
from zero to near the Kerr limit of maximum angular momentum per unit mass,
a = M , where there is a coalescence of the more highly damped frequencies to the
purely real value of the critical frequency for superradiant scattering.

1 INTRODUCTION

Complex resonant frequencies characteristic of the Schwarzschild geometry were first
discovered in calculations of the scattering of gravitational waves by black holes (Vishvesh-
wara, 1970). Recent speculation as to the role that black holes might play in a variety
of astrophysical processes has created considerable interest in methods of computing
these resonant (or quasi-normal) frequencies. In this paper the problem of determining
the gravitational quasi-normal frequencies is cast, after the manner of Zerilli (1970),
Chandrasekhar & Detweiler (1975, 1976), and Detweiler (1977, 1980), in the form of a
linearized boundary-value problem on a stationary black hole background. Specifically,
Teukolsky’s equations describing small perturbations to the Kerr geometry are shown
to be generalized spheroidal wave equations of the type solved by George Jaffé (1934)
in his classic determination of the electronic spectra of the hydrogen molecule ion. A
solution of Jaffé’s form, as generalized by Baber & Hassé (1935), can be applied to the
Chandrasekhar-Detweiler problem, and yields the complete scalar, electromagnetic, and
gravitational quasi-normal frequency spectra of Kerr black holes. Jaffé’s representation
defines the eigensolutions (quasi-normal mode functions) of



Teukolsky’s equations analytically, and eliminates the tedious (and frequently inaccurate)
numerical integrations that have characterized previous methods. Instead, the quasi-normal
frequencies and angular separation constants are defined as the simultaneous roots of two
characteristic continued fraction equations, and these may be solved numerically with high
precision.

Present results may be summarized as follows: (i) for each l-pole moment a
Schwarzschild black hole possesses an infinity of distinct complex quasi-normal frequen-
cies {ωn : n = 1, 2 . . .} ; (ii) for fixed l and large n these frequencies become evenly
spaced along an asymptote parallel the imaginary ω axis; (iii) this relationship among
the higher-order (large n) modes changes markedly as the angular momentum of the black
hole increases to the extreme Kerr limit. For non-zero azimuthal separation constant m
all but a possibly finite number of the high-order modes coalesce to one undamped mode.
The frequency of this undamped coalescence mode is simply ωc = mc3/2GM , the critical
frequency for superradiant scattering.

2 SCHWARZSCHILD QUASI-NORMAL MODES

In this section I review the Chandrasekhar–Detweiler radiative boundary value problem,
and produce the Schwarzschild quasi-normal modes as its eigenfunctions. The problem
has been solved previously by Chandrasekhar and Detweiler (1975), who employed a
numerical integration scheme to solve the separated partial differential equation with suffi-
cient accuracy to allow the determination of the under-damped (i.e. |Re(ω)| > |Im(ω)| )
quasi-normal frequencies, and by Ferrari and Mashhoon (1984), who obtained approximate
values for the fundamental (least damped) quasi-normal frequency via a potential inversion
method that was amenable to WKBJ analysis at large values of the multipole moment
l. Other important results were obtained by W.H. Press (1971), and Cunningham, et
al. (1978), who estimated quasi-normal frequencies after numerical integration of the
time-dependent wave equation. Difficulties inherent to numerical integration methods are
discussed by Detweiler (1979). The method presented here is similar to the original one
of Chandrasekhar and Detweiler, but uses analytic solutions to the differential equation.
It will be seen that this approach allows an essentially complete characterization of the
quasi-normal frequencies both for static and for rotating black holes.

Choose Schwarzschild coordinates and let ψ(t, r, θ, φ) denote a component of a per-
turbation to a massless spin s field. Understanding of covariant wave equations obeyed
by ψ has come from studies by Wheeler (1955), Regge & Wheeler (1957), Zerilli (1970),
Bardeen & Press (1973), Chandrasekhar (1975), and Chandraskhar & Detweiler (1975). If
ψ(t, r, θ, φ) is fourier analysed and expanded in spherical harmonics as

ψ(t, r, θ, φ) =
1

2π

∫ ∞
−∞

e−iωt

(∑
l

1

r
ψl(r, ω)Ylm(θ, φ)

)
dω , (1)

then it suffices to write the resulting ordinary differential equation satisfied by ψl(r, ω) in
the form, where t and r are scaled such that c = G = 2M = 1,

r(r − 1)ψl,rr + ψl,r +

[
ω2r3

r − 1
− l(l + 1) +

ε

r

]
ψl = 0 . (2)

The index ε is one less than the square of the field’s spin weight, and takes the values
−1, 0, or +3 depending on whether ψ represents, respectively, a component of a scalar,
electromagnetic, or gravitational field.
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Equation (2) is a second order ordinary differential equation with two regular singular
points and one confluently irregular singular point. It belongs to a class of differential
equations known as generalized spheroidal wave equations (Wilson, 1928). The regular
singular points are at r = 0 and at r = 1 (the event horizon). The irregular singularity is
at r = ∞. The singular point at r = 0 has indices of 1 ±

√
ε+ 1, and the singular point

at r = 1 has indices ±iω. The asymptotic solutions to (2) are ψl → exp[±iω(r + ln r)] as
r → ∞. The boundary conditions for the exterior eigenvalue problem (the quasi-normal
mode problem) are that ψl → (r − 1)−iω as r → 1, and that ψl → exp[+iω(r + ln r)] as
r →∞. These boundary conditions ensure that the field radiate only inward at the horizon
and only outward at spatial infinity.

It is notationally convenient to introduce a new frequency variable ρ by ρ = −iω. Then
the boundary value problem may be expressed as the differential equation

r(r − 1)ψl,rr + ψl,r −
[
ρ2r3

r − 1
+ l(l + 1)− ε

r

]
ψl = 0 , (3)

subject to boundary conditions

ψl
r→1−→ (r − 1)ρ and ψl

r→∞−→ r−ρe−ρr . (4)

A solution to equation (3) which has the desired behaviour at the event horizon (r = 1)
can be written in the form

ψl = (r − 1)ρ r−2ρ e−ρ(r−1)
∞∑
n=0

an

(
r − 1

r

)n
(5)

(Baber and Hassé, 1935, p. 568). The sequence of expansion coefficients {an : n =
1, 2 . . .} is determined by a three-term recurrence relation starting with a0 = 1:

α0a1 + β0a0 = 0, (6)
αnan+1 + βnan + γnan−1 = 0, n = 1, 2 . . . (7)

The recurrence coefficients αn, βn, and γn are simple functions of n and the parameters of
the differential equation:

αn = n2 + (2ρ+ 2)n + 2ρ+ 1 ,

βn = −[2n2 + (8ρ+ 2)n + 8ρ2 + 4ρ+ l(l + 1)− ε] ,

γn = n2 + 4ρn + 4ρ2 − ε− 1 .

(8)

The boundary condition at spatial infinity will be satisfied for those values of ω = ωn (the
quasi-normal frequencies) for which the series in (5) is absolutely convergent, i.e, for which
summation an exists and is finite.

The theory of three-term recurrence relations (Gautschi, 1967) may be invoked to
determine the conditions under which this sum of coefficients converges. Baber
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& Hassé’s analysis of the large n behaviour of the expansion coefficients an indicates

an+1

an

n→∞−→ 1±
√

2ρ√
n

+
2ρ− 3

4

n
+ . . . . (9)

The series in (5) will converge uniformly only if the (−) sign is obtained in (9), which will
happen only for eigenvalues ρ corresponding to quasi-normal frequencies. The an are then
said to form a “solution sequence to the recurrence relation (7) that is minimal as n→∞”
(Gautschi, 1967), and the ratio of successive an will be given by the infinite continued
fraction

an+1

an
=

−γn+1

βn+1 − αn+1γn+2

βn+2 − αn+2γn+3

βn+3 − · · ·

.

The usual notation for such a continued fraction is

an+1

an
=
−γn+1

βn+1 −
αn+1γn+2

βn+2 −
αn+2γn+3

βn+3 − · · ·
. (10)

Equation (10) may be thought of as an “n = ∞ boundary condition” on the sequence an.
We obtain a characteristic equation for the quasi-normal frequencies by evaluating equation
(10) at n = 0, and using equation (6) as an “n = 0 boundary condition” on the ratio a1/a0.
Specifically, we have two expressions that must be satisfied:

a1
a0

= −β0
α0

(11)

and
a1
a0

=
−γ1
β1 −

α1γ2
β2 −

α2γ3
β3 − · · ·

(12)

We equate the right-hand sides of (11) and (12) to obtain the desired (implicit) characteristic
equation for the quasi-normal frequencies:

0 = β0 −
α0γ1
β1 −

α1γ2
β2 −

α2γ3
β3 − · · ·

(13)

The αn, βn, and γn are explicit functions of the frequency ρ = −iω, and are given by (8).
Equation (13) may be inverted an arbitrary number of times, n, to yield an equality

between two continued fractions, one of infinite length, as in (13), and the other finite:[
βn −

αn−1γn
βn−1 −

αn−2γn−1
βn−2 − . . . −

α0γ1
β0

]
=

[
αnγn+1

βn+1 −
αn+1γn+2

βn+2 −
αn+2γn+3

βn+3 − . . .

]
(14)

(n = 1, 2 . . .) .

For every n > 0, (13) and (14) are completely equivalent in that every solution to (13)
is also a solution to (14), and vice-versa. Either one may be taken as the defining equation
for the Schwarzschild quasi-normal frequencies ωn, and the
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determination of those frequencies is now reduced to the numerical problem of finding the
roots of this equation. That equation (13) involves an infinite continued fraction whose
elements are each a different function of the frequency, similar in form to the elements
of the continued fraction that determines the spectra of the hydrogen molecule-like ions,
leads to the suspicion that the equation should have an infinite number of roots. Although
I have no formal proof of this infinity, I have calculated sixty roots for l = 2 and l = 3
gravitational fields. These are plotted in figure 1, and tend to support the idea of an infinity
of quasi-normal frequencies that asymptotically approach the values (±0.15,− 1

2n+ 0.20)
for l = 2, and (±0.16,− 1

2(n− 1) + 0.13) for l = 3. (More accurate computations will be
necessary before better representations of these asymptotes can be deduced.)

Although each inversion of (14) has the same solutions as (13), the topology of the
function on the right-hand side of the equation changes markedly with the number of
inversions n. The nth quasi-normal mode is usually found to be numerically the most
stable root of the nth inversion.

The first ten lowest-order modes were computed for l = 4 to l = 12, and the frequencies
plotted in figure 2. The values of the fundamental frequencies for the larger values of l
approach the 2(±l+ 1

2 ,−n− 1
2)(27)−

1
2 asymptote obtained by Ferrari and Mashhoon (1984)

through a WKBJ argument. Some details of the root-search algorithm are presented in §4.
Further discussion of the Jaffé representation of the quasi-normal mode wavefunctions and
the three-term recurrence relation (7) that generates it will be found in Leaver (1985a,b).

3 KERR QUASI-NORMAL MODES

The analysis of the preceding section may readily be generalized to the case of rotating
black holes. The relevant partial differential equation is given by Teukolsky (1972).
Coordinates are the Boyer-Lindquist t, r, θ, and φ. We again scale t and r such that
c = G = 2M = 1. Teukolsky denotes the field quantities by ψ, and separates the wave
equation by writing

ψ(t, r, θ, φ) =
1

2π

∫
e−iωt

∞∑
l=|s|

l∑
m=−l

eimφSlm(u)Rlm(r)dω . (15)

The separated differential equations for Rlm and Slm are[
(1− u2)Slm,u

]
,u

+

[
a2ω2u2 − 2aωsu+ s+ Alm −

(m+ su)2

1− u2

]
Slm = 0 (16)

which is Teukolsky’s equation 8, but with u = cos θ, and

∆Rlm,rr + (s+ 1)(2r − 1)Rlm,r + V (r)Rlm = 0 (17)

where

V (r) ={
[(r2 + a2)2ω2 − 2amωr + a2m2 + is (am(2r − 1)− ω(r2 − a2))] ∆−1

+ [2isωr − a2ω2 − Alm]

}
which is Teukolsky’s equation 7. The rotation parameter a is the angular momentum per
unit mass (0 ≤ a ≤ 1

2 ), and ∆ = r2 − r + a2. The field spin-weight
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parameter s takes the values 0,−1,−2, respectively for outgoing scalar, electromagnetic,
and gravitational fields. Alm is the angular separation constant for (16), and reduces to
l(l + 1)− s(s+ 1) at the Schwarzschild limit (see below).

Boundary conditions for equation (16) are that Slm be finite at the regular singular
points u = +1 and u = −1, where the indices are± 1

2(m+s) and± 1
2(m− s), respectively.

A solution to equation (16) may be expressed as

Slm(u) = eaωu(1 + u)
1
2 |m−s|(1− u)

1
2 |m+s|

∞∑
n=0

an(1 + u)n (18)

(Baber and Hassé, equation 34). The expansion coefficients are related by a three-term
recurrence relation, and the boundary condition at u = +1 will be satisfied only by its
minimal solution sequence. The recurrence relation is

αθ0a1 + βθ0a0 = 0,

αθnan+1 + βθnan + γθnan−1 = 0, n = 1, 2 . . .
(19)

where the superscript θ is used to denote association with the “angular” equation, and the
recurrence coefficients are, with k1 = 1

2 |m− s| and k2 = 1
2 |m+ s|,

αθn = −2(n+ 1)(n+ 2k1 + 1)

βθn = n(n− 1) + 2n(k1 + k2 + 1− 2aω)
− [2aω(2k1 + s+ 1)− (k1 + k2)(k1 + k2 + 1)]− [a2ω2 + s(s+ 1) + Alm]

γθn = 2aω(n+ k1 + k2 + s)
(20)

For a given a,m, ω, and s the minimal solution sequence will satisfy (19) if the separation
constant Alm is a root of the continued fraction equation

0 = βθ0 −
αθ0γ

θ
1

βθ1 −
αθ1γ

θ
2

βθ2 −
αθ2γ

θ
3

βθ3 − · · ·
(21)

or any of its inversions (cf. equation (14)). Note that at the Schwarzschild limit (a = 0)
the γn are zero for all n, and the recursion will stop whenever Alm is such that βn is
zero for some n. This will happen when Alm = n(n+ 1)− s(s+ 1), that is, when n = l
(Teukolsky, 1972).

A solution Rlm(r) to (17) may be found in a manner similar to our solution to (2)
since both are generalized spheroidal wave equations with similar boundary conditions.
Teukolsky defines the regular singular points r+ and r− as the roots of ∆, so that ∆ =
r2 − r + a2 ≡ (r − r−)(r − r+). It is useful to define an auxiliary rotation parameter
b = (1− 4a2)

1
2 , so that b ranges from 1 to 0 as a ranges from 0 to 1

2 (Kerr limit). Then
r± = 1

2(1 ± b) . The event horizon is at the larger of these values, r = r+. The indices at
r = r+ are iσ+ and −s − iσ+, where σ+ = (ωr+ − am)/b . It is the second index that
corresponds to in-going radiation.

Asymptotic solutions to equation (17) are

lim
r→∞

Rlm(r) ∼ r−1−iωe−iωr and lim
r→∞

Rlm(r) ∼ r−1−2s+iω e+iωr

(Teukolsky, 1972), the latter being outgoing according to the sign convention of
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(15). The radial equation boundary conditions for the quasi-normal mode problem are then

Rlm(r)
r→r+−→ (r − r+)−s−iσ+ and Rlm(r)

r→∞−→ r−1−2s+iω eiωr . (22)

Our solution may be expressed as

Rlm = eiωr(r − r−)−1−s+iω+iσ+ (r − r+)−s−iσ+
∞∑
n=0

dn

(
r − r+
r − r−

)n
, (23)

where the expansion coefficients are again defined by a three-term recursion relation:

αr0d1 + βr0d0 = 0,

αrndn+1 + βrndn + γrndn−1 = 0, n = 1, 2 . . .
(24)

The recursion coefficients are

αrn = n2 + (c0 + 1)n + c0,
βrn = −2n2 + (c1 + 2)n + c3,
γrn = n2 + (c2 − 3)n + c4 − c2 + 2,

(25)

where the intermediate constants cn are defined by

c0 = 1− s− iω − 2i

b

(ω
2
− am

)
,

c1 = −4 + 2(2 + b)iω +
4i

b

(ω
2
− am

)
,

c2 = s+ 3− 3iω − 2i

b

(ω
2
− am

)
,

c3 = ω2(4 + 2b− a2)− 2amω − s− 1− Alm + (2 + b)iω +
4ω + 2i

b

(ω
2
− am

)
,

c4 = s+ 1− 2ω2 − (2s+ 3)iω − 4ω + 2i

b

(ω
2
− am

)
.

(26)
The series in (23) converges and the r = ∞ boundary condition (22) is satisfied if, for a
given a, m, Alm, and s, the frequency ω is a root of the continued fraction equation

0 = βr0 −
αr0γ

r
1

βr1 −
αr1γ

r
2

βr2 −
αr2γ

r
3

βr3 − · · ·
, (27)

or any of its inversions.
It can be shown that in the limit as a → 0, the βrn of equation (25) equal the βn of

equation (8), and that the product (αrnγ
r
n+1) of equation (25) equals the product αnγn+1 of

equation (8). Since Alm → l(l + 1)− s(s+ 1) as a→ 0, we have the necessary result that
equation (27) reduces to equation (13) at the Schwarzschild limit.

Equations (21) and (27) are two equations for the unknowns Alm and ω. They may be
solved simultaneously by standard nonlinear root-search algorithms. I

291



used Argonne Laboratory’s MINPACK subroutine HYBRD. The continued fractions were
evaluated by Steed’s algorithm (Barnett et al. 1974), with the Numerical Algorithm
Group’s sequence accelerator subroutine C06BAF used to speed convergence of the ap-
proximants.

It is interesting to note the apparently singular nature of the recursion coefficients (25)
at the Kerr limit can be avoided if ω → m as b → 0, which, in the normalized units
used here, corresponds to the critical frequency ωc for the superradiant scattering of an
incident wave of spheroidal mutipole m (Detweiler, 1977; Chandrasekhar & Detweiler,
1976). We should not be surprised to find that as b → 0 the value ωc = m is indeed a
root of equations (21) and (27), at least for m ≥ 1 (see figure 3). In fact, the numerical
results suggest that in the Kerr limit the number of damped low-order modes may become
finite (although some quite imaginative extrapolation would be necessary to infer the exact
number from the present data), and the frequencies of the highest-order modes coalesce to
the single undamped frequency ωc. Detweiler (1980) has given an analytic proof that ωc
is an accumulation point for quasi-normal frequencies at the Kerr limit. The present study
suggests the likelihood that each of these infinity of frequencies clustered near ωc can be
mapped to one of the infinity of Schwarzschild quasi-normal frequencies as the rotation
parameter decreases from a = 1

2 to a = 0.
Jaffé’s method can express the quasi-normal mode wavefunctions for all values of the

rotation parameter a less than the Kerr limit a = 1
2 , but fails when a ≡ 1

2 because there
r+ = r− and the sum

∑
dn[(r−r+)/(r−r−)]n becomes useless as a solution to differential

equation (17). As a→ 1
2 the regular singular points r = r+ and r = r− of (17) coalesce to

form an irregular (confluent) singular point. Analytic solutions to the differential equation
in this case do exist, and are described in Leaver (1985a,b).

4 COMPLEX CONJUGATE SYMMETRY AND DISCUSSION OF RESULTS

Consideration of quasi-normal frequencies as the poles of the Green’s function that prop-
agates the perturbations requires the quasi-normal modes to appear as complex-conjugate
pairs of the frequency variable ρ = −iω, for the only way a real perturbation can excite
a complex mode characterized by a complex frequency to give purely real radiation is if
that real perturbation simultaneously excites a symmetry mode that is complex conjugate to
the first. Ferrari & Mashhoon (1984) attain this requirement by treating the quasi-normal
frequencies as the poles of the reflection amplitude of radiation scattered by the Regge-
Wheeler potential. For the Schwarzschild geometry this symmetry is explicit in (14) since
the continued fractions are real when ρ is real. The complex conjugate symmetry of the
roots is then assured by the Schwartz reflection principle.

The symmetry of the Schwarzschild quasi-normal frequencies about the imaginary ω
axis is shown explicitly in figure 1 for l = 2 and l = 3. I include both branches in this figure
to illustrate the crossings the branches make of the imaginary ω axis (e.g., at (0,−3.998)
for l = 2). The values of some of these frequencies are listed in table 1. Only the right-hand
frequency branches (for l values 4 to 12) are plotted in figure 2.
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Figure 1. First 60 Schwarzschild gravitational quasi-normal frequencies for l = 2 and
l = 3. The odd order frequencies are prominently marked; a few even-order frequencies
are indicated as short bars perpendicular to the curves connecting the points.

TABLE 1: REPRESENTATIVE SCHWARZSCHILD GRAVITATIONAL QUASI-NORMAL

FREQUENCIES FOR l = 2 AND l = 3.
Note the near-coincidence of the ninth l = 2 and the forty-first l = 3 frequencies with the ‘algebraically

special’ values 1
6
(l − 1)l(l + 1)(l + 2) discussed by Chandrasekhar (1984)

n l = 2 l = 3
ωn ωn

1 ( 0.747343,− 0.177925) ( 1.198887,− 0.185406)
2 ( 0.693422,− 0.547830) ( 1.165288,− 0.562596)
3 ( 0.602107,− 0.956554) ( 1.103370,− 0.958186)
4 ( 0.503010,− 1.410296) ( 1.023924,− 1.380674)
5 ( 0.415029,− 1.893690) ( 0.940348,− 1.831299)
6 ( 0.338599,− 2.391216) ( 0.862773,− 2.304303)
7 ( 0.266505,− 2.895822) ( 0.795319,− 2.791824)
8 ( 0.185617,− 3.407676) ( 0.737985,− 3.287689)
9 ( 0.000000,− 3.998000) ( 0.689237,− 3.788066)
10 ( 0.126527,− 4.605289) ( 0.647366,− 4.290798)
11 ( 0.153107,− 5.121653) ( 0.610922,− 4.794709)
12 ( 0.165196,− 5.630885) ( 0.578768,− 5.299159)
20 ( 0.175608,− 9.660879) ( 0.404157,− 9.333121)
30 ( 0.165814,−14.677118) ( 0.257431,−14.363580)
40 ( 0.156368,−19.684873) ( 0.075298,−19.415545)
41 ( 0.154912,−20.188298) (−0.000259,−20.015653)
42 ( 0.156392,−20.685530) ( 0.017662,−20.566075)
50 ( 0.151216,−24.693716) ( 0.134153,−24.119329)
60 ( 0.148484,−29.696417) ( 0.163614,−29.135345)
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Figure 2. First 10 Schwarzschild gravitational quasi-normal frequencies for l = 2 to l = 12

The equations for the Kerr geometry ((16) and (17)) are more complicated than the
equation (2) for Schwarzschild’s geometry, but still contain, in a slightly less direct form,
the desired symmetry for the quasi-normal frequencies. If ρn,m = −iωn,m and Al,m are
a quasi-normal frequency and corresponding angular separation constant for azimuthal
index m, then ρn,−m = ρ∗n,m and Al,−m = A∗l,m are a quasi-normal frequency and angular
separation constant for azimuthal index −m. This satisfies the requirement of complex-
conjugate pairing since the sum in expression (15) is over both positive and negative values
of m.

The functional dependence of Alm on the rotation parameter a is shown in tables 2
and 3 for l = 2, m = 0, and l = 2, m = 1. Figure 3 plots the trajectories the five lowest
gravitational quasi-normal frequencies trace as the rotation of the black hole increases from
the Schwarzschild limit to near the Kerr limit, and illustrates the degree to which the (2l +
1)-fold azimuthal degeneracy is lifted by the rotation for l = 2. To save space both the right
(Re(ω) > 0) branch and the left (Re(ω) < 0) branches were plotted on the same graph, the
values of the real parts of the left branches being replaced by their absolute magnitudes.
Thus the right branch appears to the right of the Schwarzschild limit (indicated by the
dashed line), and the values for the left branches typically appear to the the left. The
exception here is the case of m = 0, where, as in the Schwarzschild limit, the quasi-normal
frequencies are symmetric about the imaginary ω axis and the left branch superimposes
the right: what appear in each of the figures are the images of the left branches as they
reflect through the imaginary axis. The values for all the Kerr frequencies as plotted are
again reflected through the imaginary axis when m is replaced by −m. Comparison of the
tabulated values for the l = 2, m = 0 and the
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Figure 3. Five Kerr quasi-normal frequencies for l = 2 and m = 0, ±1, and ±2. The
curves are parameterized by the value of the rotation parameter a. The broken line
indicates the Schwarzschild limit of a = 0 , and the ends of each curve are near the Kerr
limit with a = 0.4999. The solid dots occur at a = 0.1, 0.2, 0.3, 0.4, and 0.4990 . The
lowermost curve in each of these plots corresponds to the curves in figure 1a of Detweiler
(1980). Tables 2 and 3 list some of the frequencies ploted in (a) and (b). Part (d) is a detail
of the top-most curve in (b), and illustrates the complex conjugate symmetry of the Kerr
quasi-normal frequencies.
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TABLE 2: KERR QUASI-NORMAL FREQUENCIES AND ANGULAR SEPARATION CONSTANTS

FOR THE FUNDAMENTAL MODE CORRESPONDING TO l = 2 AND m = 0.
(Values are plotted in figure 3a.)

a Alm ω1

0.0000 (4.00000, 0.00000) ( 0.747343,−0.177925)
0.1000 (3.99722, 0.00139) ( 0.750248,−0.177401)
0.2000 (3.98856, 0.00560) ( 0.759363,−0.175653)
0.3000 (3.97297, 0.01262) ( 0.776108,−0.171989)
0.4000 (3.94800, 0.02226) ( 0.803835,−0.164313)
0.4500 (3.93038, 0.02763) ( 0.824009,−0.156965)
0.4900 (3.91269, 0.03152) ( 0.844509,−0.147065)
0.4999 (3.90770, 0.03227) ( 0.850233,−0.143646)

0.0000 (4.00000, 0.00000) (−0.747343,−0.177925)
0.1000 (3.99722,−0.00139) (−0.750248,−0.177401)
0.2000 (3.98856,−0.00560) (−0.759363,−0.175653)
0.3000 (3.97297,−0.01262) (−0.776108,−0.171989)
0.4000 (3.94800,−0.02226) (−0.803835,−0.164313)
0.4500 (3.93038,−0.02763) (−0.824009,−0.156965)
0.4900 (3.91269,−0.03152) (−0.844509,−0.147065)
0.4999 (3.90770,−0.03227) (−0.850233,−0.143646)

TABLE 3: KERR QUASI-NORMAL FREQUENCIES AND ANGULAR SEPARATION CONSTANTS

FOR THE FUNDAMENTAL MODE CORRESPONDING TO l = 2 AND m = 1.
Values are plotted in figure 3b.

a Alm ω1

0.0000 (4.00000, 0.00000) ( 0.747343,−0.177925)
0.1000 (3.89315, 0.02520) ( 0.776500,−0.176977)
0.2000 (3.76757, 0.05324) ( 0.815958,−0.174514)
0.3000 (3.61247, 0.08347) ( 0.871937,−0.169128)
0.4000 (3.40228, 0.11217) ( 0.960461,−0.155910)
0.4500 (3.25345, 0.11951) ( 1.032583,−0.139609)
0.4900 (3.07966, 0.10216) ( 1.128310,−0.103285)
0.4999 (3.02131, 0.07903) ( 1.162546,−0.076881)

0.0000 (4.00000, 0.00000) (−0.747343,−0.177925)
0.1000 (4.09389, 0.02224) (−0.725477,−0.177871)
0.2000 (4.17836, 0.04150) (−0.709265,−0.176968)
0.3000 (4.25579, 0.05767) (−0.697821,−0.175132)
0.4000 (4.32786, 0.07049) (−0.690712,−0.172007)
0.4500 (4.36229, 0.07547) (−0.688717,−0.169730)
0.4900 (4.38917, 0.07868) (−0.687845,−0.167425)
0.4999 (4.39573, 0.07935) (−0.687724,−0.166772)
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l = 2, m = 1 Kerr quasi-normal frequencies (tables 2 and 3) with their respective graphs
in figures 3a,b should indicate how the graph was done. Figure 3d is a detail of figure 3b
and illustrates explicitly the symmetry between the positive m branch and the negative m
branch for l = 2 and m = ±1.

Detweiler (1980), has previously published trajectories for the fundamental quasi-
normal frequencies as function of the rotation parameter. The bottom-most curve in
each of my figures 3a, b and c correspond to the curves plotted in Detweiler’s figure 1a.
(Similiar plots for l = 3 and l = 4, corresponding to Detweiler’s figures 1b,c can be
found in Leaver (1985a).) Comparison of my figures with Detweiler’s reveals that the
m = −1 trajectory that Detweiler followed does indeed correspond to the least-damped
(fundamental) frequency at the a = 0 Schwarzschild limit but, due to the clustering of
the (formerly) higher-order modes at the undamped ωc accumulation point (derived by
Detweiler in the same paper), does not correspond to the least-damped of the modes at the
Kerr limit.

The presence of undamped high-order modes for rotating black holes has been sug-
gested by Detweiler and Ove (1983). Ferrari & Mashhoon (1984) point out that any
perturbation resulting in the excitation of an undamped mode will result in the black hole
losing rotational energy into that undamped mode until the black hole’s angular momentum
equilibrates beneath the limit at which the mode again becomes damped, or disappears. My
results suggest, but do not prove, that this limit is always the Kerr limit and that every quasi-
normal mode of a physically realizable black hole possesses at least some small amount
of damping. I stress that this is conjecture: although I found no modes that exist at the
Schwarzschild limit that become undamped before the Kerr limit, I followed only a few
low-order modes for small values of the multipole l, and have not ruled out the possibility
of modes, stable or otherwise, for rapidly rotating black holes that cannot be connected
with a mode at the Schwarzschild limit.

Exact calculations of the possible degree of excitation of undamped or minimally
damped modes (say in the collapse of rapidly rotating massive stars) have not yet been
done, so the rate at which the rotation is equilibrated cannot yet be assessed. Ferrari and
Mashhoon (1984) argue that undamped modes cannot be excited at all right at the Kerr
limit, and presumably can be but weakly excited near that limit. Current theory maintains
that while supermassive rotating black holes may exist with a ≈ 0.499 (Bardeen 1970,
and Thorne 1974), an object with a ≡ 1

2 is in fact a naked singularity, and in all likelihood
cannot form at all (Penrose, 1969). Thorne (1974) has shown that a ≈ 0.4992 is probably
an upper limit to the rotation realizable by an accreting astrophysical black hole; whether
or not a black hole can form via stellar collapse with an a greater than this value (and still
less than 1

2 ) remains an open question.
In a forthcoming article I will present a solution to the problem of computing the exci-

tation of quasi-normal modes at the Schwarzschild limit, and demonstrate the significance
of modes other than the fundamental. The method to be described can in principle be
generalized to the Kerr geometry, and the prospects for calculating the excitation of the
clustered modes and obtaining reliable numeric answers to questions concerning black hole
stability appear good.
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