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Abstract

The validity of the jwkb approximation as applied to black hole normal
modes is discussed as a possible source of the discrepancy between the quasi-
normal frequency values computed by Guinn, Will, Kojima, and Schutz in
their recent letter, and those computed by the method of continued fractions.
For Regge-Wheeler-like potentials and large frequency magnitudes, an analytic
jwkb approximation is suggested that can be expressed in terms of complete
elliptic integrals.

1 Introduction

In a recent Letter, Guinn et al. [1] have computed values for the large overtone
Schwarzschild quasinormal frequencies that differ both quantitatively and qualita-
tively from those published by this author five years previously. While the quasi-
normal frequencies Guinn et al. compute for the Regge-Wheeler potential via the
second order jwkb approximation agree closely with Chandrasekhar and Detweiler’s
numerical integration [2] and our continued fraction results [3] at the fundamental
and first overtone resonances, they systematically diverge from the continued fraction
values as the overtone index increases. At asymptotically large overtone indices, the
real parts of the quasinormal frequencies as computed by the jwkb method approach
zero, while the continued fraction result places them on an asymptote parallel to, but
bounded away from, the imaginary frequency axis (Guinn et al. Figure 3). As part of
this systematic discrepancy, the jwkb method does not suggest the possible existence
of a quasinormal mode at the algebraically special frequency. The authors conclude
“The possibility that Leaver’s calculation gives wrong values for the real parts of the
frequencies must be considered. . . on the other hand, we have looked at this and not
found any obvious flaws. These questions urgently need to be clarified, because of
the potentially wide applicability of the wkb method to other problems. . . ”

Details of the continued fraction method are given in references [3, 4, 5, 6]. The val-
ues originally obtained for the lowest six l = 2 quasinormal frequencies were confirmed
by computing the Wronskian of the quasinormal mode wavefunction with the purely-
outgoing-at-infinity wavefunction in reference [7], and more recently by Majumdar
and Panchepakasan [8] by a matrix-determinant method, and by Andersson [9] via
an elegant numerical integration. These four different methods give the same results
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to the precision computed; the lowest six quasinormal frequency values should not
be in question. Numerical techniques used to evaluate continued fractions are well
established [10, 11, 12], and are generally quite robust. Further discussion of the
convergence, validity, and accuracy of the method will appear in reference [13].

2 The Jwkb Approximation and its Validity

The discussion accompanying the first nine equations of Guinn et al.’s letter, together
with their Figures 1 and 2 and Bender and Orzag’s [14] eq. 10.1.17, is sufficient to
describe the jwkb problem. It must be recalled that the jwkb series is almost
always asymptotic [14]; prior to the efforts of Schutz, Will, and their coworkers [1,
15, 16, 17, 18, 19], the method does not appear to have been applied to the potential
barrier scattering - quasinormal mode eigenvalue problem. Since the Regge-Wheeler
potential changes appreciably over the effective quasinormal wavelength near the
potential’s peak, the validity of the jwkb approximation is open to question. We
suggest Schutz and Will’s original assertion [15] that the approach “will be powerful
because the jwkb approximation can be carried to higher orders, either as a means
to improve the accuracy or as a means to establish errors explicitly” has yet to be
established: it at least requires the tabular comparison of values from successively
higher jwkb approximations (third order minimum) against increasing overtone index
using a consistent potential approximation and integration scheme throughout, and
against known reliable values of fundamental and lowest overtone frequencies (e.g.
those for which references [2] and [17] agree, or those listed in Table I of reference
[7]).

Guinn et al. do not cite such a systematic comparison; their belief in the validity
of their results appears to stem from the 3 - 4% agreement between their first order
jwkb results and the continued fraction/numerical integration results for overtone
indices n = 0, 1, and 2, and from the relatively close agreement between their first
and second order approximations: 1% at n = 10 and 0.04% at n = 60. Their implicit
assumption is that the asymptotic jwkb series can then be optimally and accurately
truncated after the second term for all values of the frequency.

We see no basis for this assumption. Guinn et al.’s equations 5 (with Bender
and Orzag’s 10.1.17) indicate that the eikonal term S0 is the dominant contributor
to the S series simply because the magnitude of its residue ρ at the pole r = 2M
becomes arbitrarily large as the overtone index increases. None of the transport terms
S2, S4 . . . contribute at all to this residue [1]. Convergence of the jwkb series depends
on the convergence of the successive transport terms on contour C3, about which the
numerical contribution of the eikonal term S0 and (relatively small) first transport
term S2 alone tells us nothing. For this problem the relative accuracy of the jwkb
approximation can at best be self-assessed only when there exists a decreasing sub-
sequence of the transport terms at the frequency value of interest. Otherwise it is not
clear that even the first transport term S2 makes a valid contribution.
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3 The quasinormal mode at the algebraically spe-

cial frequency

The algebraically special gravitational perturbations, one for each multipole, occur
at the purely imaginary frequencies ωas = −il(l − 1)(l + 1)(l + 2)/12M . This case
was not investigated carefully at the time we prepared our original quasinormal
mode article (save to note the continued fraction did not converge there), but when
preparing reference [7] the Coulomb wavefunction expansion therein described was
used to investigate the asymptotic behavior of the wavefunction that was ingoing
at the horizon in a small frequency neighborhood encircling the algebraically special
value. We were satisfied that wavefunction did indeed satisfy the outgoing quasi-
normal mode boundary condition at infinity, at the algebraically special frequency.
Note the distinction between “quasinormal mode” and “algebraically special mode.”
These terms refer to actual functional solutions to the Regge-Wheeler equation. Our
claim is that there exists a quasinormal mode at the algebraically special frequency.
Obviously, the quasinormal and algebraically special modes cannot be the same; they
are just one way to express the Regge-Wheeler equation’s two independent solutions
at the algebraically special frequency.

4 Asymptotic overtones above the algebraically spe-

cial frequency

It should be noted the continued fraction method can compute overtone values for
n much larger than 60. Our original computations were halted at that particular
value only because we felt we had by then sufficiently established the general nature
of the asymptotic Schwarzschild quasinormal frequency distribution. The asymptotic
behavior Guinn, Will et al. obtain for the high-overtone quasinormal frequencies of
the Regge-Wheeler potential, in addition to differing qualitatively from the continued
fraction result, also differs qualitatively from the high-overtone quasinormal frequency
behavior of the only other analytic potential whose quasinormal frequency values
are known (at least to us), namely, the Eckart potential investigated by Blome and
Mashhoon [21]. The Eckart potential is

V (x) = V0e
2µ − V0[tanh(αx+ µ)− tanhµ]2 cosh2 µ , (1)

and reduces to the sech2(αx) potential when µ = 0. Blome and Mashhoon give the
quasinormal frequencies of this potential as

ω = ±a(1 + ∆)− ib(1−∆) (2)

where

a = V
1/2
0 coshµ[1− α2/4V0 cosh2 µ]1/2 , (3)

b = α(n+ 1/2) , (4)

∆ =
V0 sinh 2µ

2(a2 + b2)
. (5)
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These quasinormal frequencies have the same qualitative asymptotic distribution as
was obtained by the continued fraction method for the Regge-Wheeler potential: the
asymptote parallels the imaginary ω axis and is bounded away from it.

Interestingly, when applied to the Eckart potential the jwkb approximation may
(with a thusfar totally unjustified bit of imagination) be used to exactly duplicate the
known analytic quasinormal frequency values. Following the prescription of Guinn,
et al.’s letter, it is straightforward to show that the first order jwkb values for the
Eckart quasinormal frequencies are given by eqs. (2) - (5) but with a replaced by

a0 = V
1/2
0 coshµ. The second order result may be expressed similarly, but with a

replaced by a2 = V
1/2
0 coshµ[1−α2/(8V0 cosh2 µ)]. Note that a0 and a2 form the first

two terms of the Taylor’s expansion of a in the quantity α2/(4V0 cosh2 µ), which is a
normalized measure of the curvature at the peak of the potential.

This may be fortuitous, and we have not investigated jwkb orders beyond the
second. If the pattern holds it would imply the jwkb series for this potential is
uniformly convergent, rather than asymptotic, a conclusion that certainly cannot be
drawn from analysis of only the first two terms. Although there is no reason to
suppose the Regge-Wheeler quasinormal frequencies will be as simply related to their
jwkb approximations as their Eckart potential counterparts appear to be, something
may be gained in attempting a similarly analytic result.

5 An analytic jwkb approach for Regge-Wheeler-

like potentials at large frequency magnitudes

A key consideration is that when expressed as functions of r, the integrands of each
of the jwkb integrals (Guinn et al.’s eqs. 4 and 5) may be expressed as the product
of the ratios of two polynomials and the square root of a quartic. This makes them
elliptic integrals [22]; that the endpoints r3 and r4 are roots of the quartic makes
them complete. Such integrals may be expressed in closed analytic form, at least as
|ρ| → ∞, provided one can find simple expressions for the endpoints.

To this end one can refine Mashhoon’s approach [21], which originally was to
replace the Regge-Wheeler potential with a model potential that was both tractable
to analysis, and whose quasinormal frequencies could be expected to have some
properties in common with those of the Regge-Wheeler potential. Mashhoon adjusted
the model potential’s peak amplitude and curvature to match those of the Regge-
Wheeler potential. He obtained good approximations to the lowest quasinormal
frequencies, and a hint as to the nature of their asymptotic distribution.

It is precisely that asymptotic distribution we now wish to analyze. Not inciden-
tally, Mashhoon’s potentials also closely approximate the Regge-Wheeler potential’s
jwkb turning points near the fundamental frequency; the modification that suggests
itself is to replace the Regge-Wheeler potential with a model potential that is both
tractable to exact jwkb analysis, and which closely approximates the Regge-Wheeler
potential on the jwkb integration contours for frequency values in the asymptotic
regime. The model potential’s turning points must be both exactly solvable and
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asymptotically approach those of the Regge-Wheeler potential in this region. To
construct this model potential we follow Guinn et al. and expand the turning points
of the Regge-Wheeler potential in inverse powers of

√
ρ, finding

ri ∼ ε1/4(−ρ2)−1/4
[
1− 1

4
(ε+ λ)ε−3/4(−ρ2)−1/4 +O(ρ−1)

]
, (6)

where λ = l(l+1) and the field spin parameter ε is +3 for gravitational perturbations.
The four different turning points are obtained by taking the four different fourth roots
of −ρ2, taking the same fourth root at each occurrence in (6). We are interested in
large magnitudes |ρ| lying near the negative real axis; to the same order in ρ−1 the
turning points of the Regge-Wheeler potential are shared by the model potential

Vmodel = −Qmodel − ρ2 = r−4

[
(ε+ λ)2

4ε
r2 − (ε+ λ)r + ε

]
, (7)

whose exact turning points may be found by simple factoring. The two potentials
differ only in the coefficient of r−2, which for the Regge-Wheeler potential is simply
λ. Figure 1 of reference [3] suggests the asymptotic quasinormal frequency values are
not strong functions of that parameter. The model potential closely approximates
the Regge-Wheeler potential for small magnitudes of r, and it remains only to define
a jwkb integration contour over which this condition holds.

Two possibilities suggest themselves. The first is the contour C3 used by Guinn et
al. (see their Figure 2.), provided care is taken to explicitly separate the contribution
from the pole at r = 0. The second is a deformation of Guinn et al.’s contour C0

and the branch cut it encircles, so that they run directly from turning point r4 to
a small distance from the origin, loop around the other branch cut to r2 and back
to the origin, loop around the pole at r = 2M and back to the origin, then to their
terminus at r3. In both cases it is important the actual Regge-Wheeler potential be
used to evaluate the integral around the pole at r = 2M , which lies outside the region
the model potential is valid. Symmetries in the integrands may be exploited on both
contours, although the presence of the extra branch cut inside the second (between
r2 and the origin) may introduce subtleties.

With these contours and turning points, the jwkb integrals of the Qmodel (eq.
7) can be expressed in terms of complete elliptical integrals of analytic arguments,
and in the limit of large ρ, eventually in closed analytic form. As the quasi-numeric
asymptotic expression (equation 11 of their letter) arrived at by Guinn et al. may be
more easily and accurately obtained by curve fitting continued fraction results, the
jwkb method’s greatest contribution (if it is valid for large overtones at all) will no
doubt be realized through its potential to yield such fully analytic forms.

6 Acknowledgements and Conclusion

As validity conditions for the application of the jwkb approximation to black hole
quasinormal mode problems have yet to be established, it is not surprising there
should be discrepancies between jwkb results and those obtained by other methods
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at this time. Considerable work remains to be done. We received a copy of Nils
Andersson’s PhD dissertation [9] while this manuscript was in preparation. Among
his findings is that the Zerilli potential yields better phase integral quasinormal
frequency results than does Regge-Wheeler. A. Anderson and R.H. Price’s [23] recent
intertwining analysis may be useful in clarifying this issue.

Last, we are grateful to Professor Will for his invitation (personal communication)
to respond to the issues he and his colleagues raised[1]. Professor Will also kindly
sent notes from a presentation made by Hans-Peter Nollert at the Sixth Marcel
Grossman Meeting (1991) while the present manuscript was under review. Nollert
reports deriving a series expansion for the Wronskian of the ingoing and outgoing
solutions to the Regge-Wheeler equation which is convergent for all frequencies. The
quasinormal frequencies are just the zeroes of this Wronskian; Nollert plots their
values for overtone indices up to n ∼ 2000, and presents a simple formula for their
asymptotic distribution. His results agree with those obtained from the continued
fraction method, except (apparently) at the algebraically special frequencies. More
important is the possibility his method might also provide values for the frequency
derivative of the Wronskian at large overtone quasinormal frequencies, and thus allow
completion of the normal mode expansion of the Green’s function begun in reference
[7]. We thank Drs. Andersson and Nollert for making their work available, and
encourage timely publication of their results.
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