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Abstract

We present a matrix-eigenvalue algorithm for accurately computing the quasinormal fre-
quencies and modes of charged static black holes. The method is then refined through the
introduction of a continued fraction step. We believe the approach will generalize to a variety
of non-separable wave equations, including the Kerr-Newman case of charged rotating black
holes.

1 Introduction

The dynamic perturbations of uncharged rotating and static charged black holes are described
by one of several separable second order linear partial differential equations. For Schwarzschild
black holes these are the Regge-Wheeler[1] and Zerilli[2] equations, and for Kerr black holes the
Teukolsky[3] equations. The perturbation equations for the charged Reissner-Nordström black
hole were also derived by Zerilli,[4] and by Moncrief.[5] The theory of dynamic black hole per-
turbations and their associated quasinormal resonances is discussed in references [6, 7, 8, 9], and
[10]. Stationary perturbations of Reissner-Nordström black holes are discussed by Dvor̆ák.[11] A
fundamental difficulty in quantitatively characterizing black hole resonances is that the numerical
solutions of these differential equations are unstable in the frequency region of interest.[12] Chan-
drasekhar and Detweiler[7] developed a numerical procedure that reduced (but did not eliminate)
this instability, and were able to integrate the Regge-Wheeler equation with accuracy sufficient
to compute the fundamental quasinormal frequencies, and the first overtones, for each multipole
moment for the Schwarzschild black hole. The method was successfully applied to the uncharged
rotating Kerr black hole by Detweiler,[13] and to the charged static Reissner-Nordström black hole
by Gunter.[9]

Implicit in the Chandrasekhar–Detweiler scheme was the understanding that for each multipole
the number of underdamped modes was (approximately) equal to the multipole index l. Although
an infinity of undamped modes for a very rapidly rotating hole was demonstrated by Detweiler,[13]

the question of whether there were more Schwarzschild modes, presumed to be overdamped,
remained open[14] until a stable continued fraction method for computing them was discovered.[15]

This method allowed connection to be made between certain overdamped Schwarzschild modes
and Detweiler’s undamped modes at the Kerr limit. The contribution of individual modes to
particular physical Schwarzschild gravitational waveforms, with concomitant emphasis on com-
puting the quasinormal mode wavefunctions as well as the frequencies, was demonstrated shortly
thereafter.[16]

Significant semi-analytic contributions to black hole normal mode analysis have been pio-
neered by Mashhoon[17] and by Schutz and Will,[18] and their coworkers.[19, 20] Indeed, the
suggestion of the existence of an infinity of overdamped modes is implicit in the work of Ferrari
and Mashhoon,[21] and the present study was itself prompted by a recent higher-order WKBJ
analysis of Reissner-Nordström quasinormal frequencies. In that article,[22] Kokkotas and Schutz
raise the interesting question of whether the continued fraction method employed previously by us
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to determine the quasinormal frequencies and modes of uncharged black holes is applicable to the
Reissner-Nordström case. We show here that – with suitable generalization – it is.
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2 Recurrence Relations

As mentioned previously, an early difficulty in characterizing the quasinormal modes of uncharged
black holes was the numerical instability of the radial components of the Regge-Wheeler and
Teukolsky equations in the frequency regions of interest. The motivation behind our previous work
was to transform these unstable ordinary differential equations into stable algebraic recurrence
relations, and to exploit the analytic and numeric properties of the recurrence relations to find the
quasinormal frequencies and generate their corresponding modes. In the particular case studied,
that of the uncharged Kerr black hole, the resulting recurrence relations were of the three-term
variety and hence amenable to relatively elegant continued fraction solutions. However, the basic
method is not necessarily limited to recurrence relations of this type. Indeed, if one follows the
sequence of linear second order one dimensional wave equations, one finds that wave equations
with one coordinate singularity, such as Bessel equations and the Coulomb wave equation, possess
one regular singular point and one irregular (confluent) singular point at spatial infinity. Their
series solutions are the well-known confluent hypergeometric series and are characterized by two-
term recurrence relations connecting the expansion coefficients.[23] Likewise, the spheroidal wave
equations (of which the Regge-Wheeler and Teukolsky equations are special cases) possess, in
addition to the obligatory confluent singularity, two regular singular points corresponding to the
two foci of the spheroidal coordinates.[24] And the series representations of the spheroidal wave-
functions have three-term recurrence relations connecting their coefficients.[25, 26, 27, 28] (Three-
term recurrence power series solutions to the Regge-Wheeler equation were first formulated by
Arenstorf, Cohen, Kearney, and Kegeles,[29] although the form these authors used is not, and was
not intended to be, suitable for quasinormal mode calculations. Earlier analytic contributions were
made by Persides.[30])

One then might speculate whether the Zerilli-Moncreif equation which describes odd-parity
perturbations of the static charged black hole, being a wave equation with a confluent singularity
and three regular singular points (making it an ellipsoidal wave equation[31]), possesses series
solutions whose coefficients are connected by four-term recurrence relations. To confirm this
conjecture we first scale the radial coordinate, frequency parameter, and charge by the mass M of
the black hole: r → r/2M , ρ = −2Miω, and Q = Q∗/2M , 0 ≤ Q < 1/2 in these units. Assume
an exp ρt time dependence. Then, following Moncrief,[5] Chandresekhar[32] and Gunter,[9] write
the odd parity equation for multipole index l as[

d2

dr2∗
− ρ2 − V (−)

i (r)

]
Z

(−)
i (r) = 0 (1)

where

dr

dr∗
=
4
r2
,

4 = r2 − r +Q2 ≡ (r − r−)(r − r+) ,

V
(−)
i (r) =

4
r5
(Ar − qj + 4Q2/r) ,

A = l(l + 1) ,

q1 =
(
3 +

√
9 + 16Q2(l − 1)(l + 2)

)
/2 ,

q2 =
(
3−

√
9 + 16Q2(l − 1)(l + 2)

)
/2 ,

and i, j = 1, 2 (i 6= j).
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The functions Z(−)
1 and Z

(−)
2 correspond to those odd parity perturbations that are respectively

purely electromagnetic and purely gravitational at the Schwarzschild limit (Q = 0). Even parity
perturbations are obtained from the odd parity solutions via the transformation[33]

[A(A− 2)− ρqj]Z(+)
i =

[
A(A− 2) +

2q2j4
r3[(A− 2)r + qj]

]
Z

(−)
i + 2qj

dZ
(−)
i

dr∗
. (2)

The confluent singular point of equation (1) is at r = ∞, and the three regular singular points are
at r = 0 and at the inner (Cauchy) and outer (event) horizons, r± ≡ (1 ±

√
1− 4Q2)/2. Making

a Jaffé-Baber-Hassé transformation[34, 35, 15] of the independent variable, incorporating boundary
conditions appropriate for quasinormal modes,[32, 9, 22] and applying a bit of algebra, we obtain
the (suitably normalized) form

Z
(−)
i = r+e

2ρr+(r+ − r−)2ρ−1
[
r−1(r − r−)1−ρe−ρr

]
ub

∞∑
n=0

anu
n , (3)

where u ≡ (r − r+)/(r − r−) and the exponent b = ρr2+/(r+ − r−) is the solution to the indicial
equation at r = r+ that corresponds to ingoing wave behavior at the outer (r+) horizon. The sum
of the exponents of r, (r − r−), and (r − r+) is determined by the outgoing condition at spatial
infinity: lim

r→∞Z
(−)
i ∝ exp−ρ(r + ln r). The particular exponents for r and (r − r−) are then

determined by the requirement that the recursion relation be as simple as possible, in this case four
terms. The normalization chosen is that used by Gunter and by Kokkotas and Schutz, vis

lim
r∗→−∞

Z
(−)
i = eρr∗ , (4)

where the tortoise coordinate r∗ is given by

r∗ =

∫
r2

4
dr = r +

r2+
r+ − r−

ln (r − r+)−
r2−

r+ − r−
ln (r − r−) , (5)

so that with the series normalized to a0 = 1 we have

lim
r∗→−∞

Z
(−)
i = eρr+(r+ − r−)−ρr

2
−/(r+−r−)(r − r+)b , (6)

and

lim
r∗→+∞

Z
(−)
i =

[
r+e

2ρr+(r+ − r−)2ρ−1
∞∑
n=0

an

]
e−ρr∗ , (7)

providing
∑
an converges. The expansion coefficients an in equation (3) are then defined by

α0a1 + β0a0 = 0 ,
α1a2 + β1a1 + γ1a0 = 0 ,
αnan+1 + βnan + γnan−1 + δnan−2 = 0 , n = 2, 3 . . . ,

(8)

where the recurrence coefficients are given in terms of the black hole parameters by

αn = [n2 + 2(b+ 1)n+ 2b+ 1]r+ ,
βn = (−2 + r−)n

2 + [−2− 2b(2− r−)− 4ρr2+ + 6r−]n
+ [qj − 2ρ2r3+ − 4ρr2+(1 + b)− 2b2(2− r−1+ )− r+A− (3− 2b)r−] ,

γn = (1 + r−)n
2 + [2ρr+(1 + 2r−) + 2b(1 + r−)− 10r−]n

+ {ρr+[2− 12r− + (ρ+ 2b)(1 + 2r−)]− 1− qj − 2b(1 + 3r−)
+ b2[16 + 8r− − (15− 38r− + 26r2−)r

−3
+ ] + (A+ 13)r−} ,

δn = [−n2 + 2(3− ρ− b)n− (9 + 4ρb− 6b− 6ρ)]r− .

(9)
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Again, the expansion coefficients are normalized so that a0 = 1. Each of equations (9) can be
scaled by a factor n−2 for n > 0, or by b−2 if |b| > n. In the Schwarzschild limit where Q → 0,
r− → 0, r+ → 1, b→ ρ, equations (3) – (9) revert to the three term expression studied previously
(reference [15], equations 6–8); the quasinormal frequencies were found then to be those values of
the frequency parameter ρ for which the series (3) converged when Q and r− were zero. (Note also
the recurrence coefficients for the expansion of the Reissner-Nordström quasinormal modes depend
on charge, through the quantity b in equation 9 above, in a way analogous to the dependence on
angular momentum of the recurrence coefficients for the expansion of the Kerr quasinormal modes,
equation (26) of reference [15].) The next question becomes whether the corresponding convergent
solution to the four-term recurrence relation (8) is also numerically stable in the presence of charge,
and if so, how to find it.

[As an aside, it is important to note the singularity rearrangement effected by the change of
independent variable from r to u. The regular singularity at r = r+ is at u = 0, the confluent
singularity at r = ∞ appears at u = 1, and the regular singularities at r = 0 and r = r− appear
respectively at u = r+/r− and at u = −(r+ − r−)∞. Clearly the power series expansion in u is
useless at the limit of maximal charge when r− = r+ and u ≡ 1. It is therefore a mistake to read
more analytic information into the leading factors of expansion (3) then is actually present: their
apparently singular behavior at maximal Q will later be seen to be exactly cancelled by equally
singular behavior of the series

∑
anu

n. However the maximal Q limit is not physically realizable,
and we return to the Q < 1/2 case.]

3 The Solution

We discuss two equivalent approaches, the second of which may be considered a refinement of
the first. Equations (8) define an infinite banded matrix equation of width four which in the
Schwarzschild limit reduces to an infinite tridiagonal system. The clue to its solution is (again) to
be found in studies of the one-particle Schrödinger equation with two-center Coulomb potential.
From an article by M. Shimizu:

“The eigenvalue equation is equivalent to an ∞-dimensional secular equation. A
way to solve it is to approximate the ∞-dimensional matrix by a finite one of an
appropriate order. Then the calculation can be made quite straightforwardly. . . The
actual calculations are carried out for a seven dimensional matrix. Within the accuracy
required, these solutions coincide completely with those obtained by using a nine
dimensional matrix as long as the dipole moment is not large. As a check of these
calculations, the continued fraction method and the expansion of the determinant
of the secular equation by an adequate series of its non-diagonal elements are also
employed. . .”[36]

This connection is not new; the intimate relationship between continued fractions and the de-
terminants of truncated tridiagonal systems was exploited as early as sixty years ago.[25] We
explicitly chose the continued fraction method in our investigations of uncharged black holes
because the inversion properties of continued fractions allow stable and accurate determination
of the higher order eigenfrequencies.[37] Comparison with previously computed low-lying black
hole resonances[7, 13] allowed us to confirm the validity of our derivations at the fundamental
quasinormal frequency and the first overtone. Repeated inversion of the continued fractions then
lead to the (more-or-less) complete characterization of the quasinormal mode spectrum of the Kerr
black hole.
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Now, with the addition of charge, we truncate the expansion in (3) at some number N terms
and write equations (8) explicitly as

β0 α0

γ1 β1 α1

δ2 γ2 β2 α2

. . . . . . . . . . . .
δN−1 γN−1 βN−1 αN−1

δN γN βN





a0
a1
a2
...
aN−1
aN


= 0 . (10)

As a simple generalization of the tridiagonal case, we then assert that the frequency eigenvalues
of the above band matrix, that is, those values of ρ, Reρ ≤ 0, for which the determinant is zero,
are, in the limit as N → ∞, the quasinormal frequencies of the Reissner-Nordström black hole.
The algorithm to find these frequencies for a given l, i, and Q is simple: (i) Choose an N . (ii)
Define a function returning the determinant of system (10). (iii) Find the roots of interest (e.g.,
least damped) of this function. (iv) Increase N until those roots become constant to within the
desired precision.

We used Linpack[38] routine ZGBDI to compute the determinants and Minpack[39] routine
HYBRD to locate their roots. A sequence of charge values Q was established that ranged from
Q = 0 to Q = 0.4999, the value of the root at one charge value in the sequence being used as
an initial guess to the root at the next. The starting value at the Schwarzschild limit (Q = 0)
for a given quasinormal overtone was generated by the continued fraction technique of reference
([15]), and the values obtained at increasing Q checked, for the least-damped modes, against those
tabulated by Gunter[9] and by Kokkotas and Schutz.[22]

3.1 Dimensions and convergence

But there a few caveats, not the least being that the eigenfrequencies themselves are of limited
utility without the corresponding eigenfunctions. Consider the nature of a proposed solution
eigenvector {an : n = 0, 1, 2 . . .} to equation (3) at the Schwarzschild limit where the δn are
identically zero and the matrix (10) is tridiagonal. In this case the asymptotic behavior of the an can
be determined analytically.[35] To review, three-term recurrence relations possess two independent
solution sequences, and a particular linear combination of the two can usually be found that is
minimal in the sense that the ratio of the magnitude of the nth term of the minimal sequence to the
nth term of any other solution sequence goes to zero for large n.[40] In the case of the sequences
generated by the Regge-Wheeler and Teukolsky equations, this minimal solution exists and can be
shown to converge reasonably rapidly whenever ρ is not a purely negative real.[15] Specifically, at
the Schwarzschild limit

lim
n→∞

an+1

an
∼ 1± (2ρ)

1
2

n
1
2

+
2ρ− 3

4

n
+ . . . (11)

It is precisely this minimal solution, defined when the lower sign is obtained in (11) for an eigen-
frequency (with Re(ρ) < 0) such that each of equations (8) are satisfied , that determines the
quasinormal mode.

One numerical technique for generating these minimal solutions when Q = 0, provided one
does not require a large number of terms, is to choose an N much larger than the index of the
largest term required, and assume all an are zero for n > N . Then set aN equal to a small value,
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determine aN−1 from aN−1 = −aNβN/γN , and generate the remainder of the an by downward
recursion. In our case the frequency would be an eigenfrequency, and the minimal solution vector
an eigenvector, if the first of equations (8) were then satisfied. The value of N is then increased
until the normalized values of the desired small n terms, and the corresponding eigenvalues, no
longer appreciably change. This procedure (and the eigenvalue condition) is specified exactly by
the truncated tridiagonal matrix equation (10), in the Schwarzschild limit when the δn are zero.[41]

The important point is that generation of the minimal solution vector is numerically stable only
under downward recursion from large n, and it is possible to do this only when the matrix is upper-
triangular or (as a special case) tridiagonal. Therefore when Q 6= 0 the δn must be eliminated
from the singular matrix obtained upon completing the root search before the eigenvector can
be generated. This Gaussian-type elimination step involves only a straightforward (and in this
case stable) upward recursion from the n = 1 equation and, aside from an overall normalization,
completes our first method of solution. But it is this last consideration of the generation of the
eigenvector that suggests a simplification that can ease considerably the automatic generation of
Reissner-Nordström quasinormal frequencies and modes.
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4 Refinement of the Solution

The matrix-determinant algorithm just presented, while simple to implement, lacks somewhat in
robustness. There are two reasons. First, given the known nature of the solution sequences {an}
in the Schwarzschild limit as a function of the overtone index q = 0, 1, 2 . . . , namely that the an
increase rapidly with n for n less than the overtone index q, and that convergence does not set
in until after n becomes greater than this value,[42] we can expect the matrix order N required
to accurately approximate the quasinormal frequencies to be a strongly increasing function of
the overtone index. Second, due to the confluence of the two horizons as the charge parameter
approaches its limiting value Q = 1/2, the required matrix order is also a function of Q. Thus
there is no a priori way of knowing the matrix order needed to yield a given accuracy of the
quasinormal eigenfrequency, even for a fixed overtone, and much redundant computation on ever
increasing values of N is required to obtain reliable results.

Precisely the same problems were encountered for the Kerr black hole: there the convergence
of the solution sequences depended on both the overtone index and the angular momentum pa-
rameter, the latter in a way analogous to the present dependence on charge. In the Kerr case the
continued fraction representation of the solutions showed its full power, for although the number
of series terms necessary to represent the continued fraction increased with angular momentum,
the continued fraction evaluation algorithm automatically generated just enough terms to provide
a given accuracy of representation. The particular continued fraction evaluation algorithm we use
is quite robust: in contrast to methods that evaluate an infinite continued fraction as an infinite
sequence of rational approximants, the numerator and denominator series of which are susceptible
to overflow and therefore usually require rescaling, this algorithm expresses the infinite continued
fraction as an infinite series that converges if-and-only-if the fraction converges. The method is
impervious to scaling problems, and its iteration loop requires but seven executable statements.[43]

Specifically, when one has prior knowledge of the convergence properties of the sequence
that defines a continued fraction, as we have in equation (11), it may be permissible to sum the
continued fraction’s series head-to-tail, and to truncate it after the magnitudes of the successive
terms have decreased to less than some specified tolerance. To justify this basis for truncation in
the Schwarzschild case, note that equation (11) implies that

an ∼ n2ρ−3/4e±
√
8ρn (12)

for large n, and that the lower (negative) sign is always obtained for the minimal sequence selected
by the continued fraction. Since Reρ < 0 for quasinormal frequencies, the error introduced by
truncating the series N terms after the onset of asymptotic behavior is approximately

EN =

∣∣∣∣∫ ∞
N

andn

∣∣∣∣ ∼ ∣∣∣∣2 ∫ ∞√
N

z4ρ−1/2e−
√
8ρzdz

∣∣∣∣ , (13)

The exponential term guarantees adequate convergence of the integral near the lower quasinormal
overtone frequencies where |Imρ| > |Reρ| and |ρ| ∼ 1, while the z4ρ−1/2 term assures somewhat
slower convergence as the overtone index increases. Hence

EN < min

(∣∣∣∣ N2ρ−1/4

2ρ− 1/4

∣∣∣∣ ,
∣∣∣∣∣e−

√
8ρN

√
2ρ

∣∣∣∣∣
)
, (14)

and we have a simple method of determining an upper bound on the number of termsNE necessary
to retain if the series is to be truncated with error less than E � 1 at the Schwarzschild limit:

NE ≥ max
(∣∣[(2ρ− 1/4)E]1/(2ρ−1/4)

∣∣ , ∣∣∣[ln(√2ρE)]2/(8ρ)
∣∣∣) . (15)
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The error estimates (14) and (15) tend to considerably overestimate the actual truncation error
since the exp

√
8ρn in (12) make the an an alternating series, albeit with a period proportional

to
√
n. While a rigorous analysis of the behavior of such series is possible, in practice one

empirically observes that if the series in the continued fraction algorithm is terminated after the
relative magnitude of each successive term becomes smaller than 10−d (where there are d digits of
desired accuracy), then subsequent inclusion of more terms in the series only effects the relative
value of the quasinormal frequency being evaluated by approximately this amount. Therein lies
the elegance of the method: the continued fraction algorithm automatically retains just the number
of terms sufficient to produce a specified accuracy.

One is not so fortunate when dealing with the truncated matrix equation (10) of the previous
section. There the truncation order N was determined by comparing the quasinormal frequency
values obtained from employing successively larger orders, and halting when the differences be-
came acceptably small. In the Schwarzschild limit one finds (not surprisingly) that the order of
the matrix needed to produce a given accuracy is precisely the number of terms that the continued
fraction algorithm retains automatically. What is desired is a method to incorporate this feature of
continued fraction evaluation when the charge Q and the δn in equation (10) are not zero.

We do this by inserting a Gaussian elimination step into our quasinormal frequency algorithm.
For each value of ρ used in the root search we first tridiagonalizing matrix equation (10), then
realize that the quasinormal frequency search is for those values of ρ for which the determinant
is zero, which are precisely those values of ρ for which the tridiagonal matrix problem possesses
minimal solution vectors and hence zero the continued fraction, expression (19) below. The zeroes
of the determinant (tridiagonalized or not) and of the continued fraction are identical.[44]

The elimination step acts recursively on each row starting from the top (n = 2), so it too
need be used only on the number of rows necessary for the fraction to converge. The method
is equivalent to the one presented in the previous section, and again we find that the number of
terms selected by the continued fraction algorithm to produce quasinormal frequency values of a
desired accuracy is identical to the order N needed to produce the same accuracy directly from
equation (10). The advantage here is that the continued fraction method does not require the value
of N in advance, nor does it require storage for a large matrix. And the inversion properties of the
continued fraction allow the stable computation of the higher quasinormal overtones. Explicitly,
the transformed recurrence relation is

α′0a1 + β′0a0 = 0 ,
α′nan+1 + β′nan + γ′nan−1 = 0 , n = 1, 2 . . . ,

(16)

where the recurrence coefficients are given in terms of the αn, βn, γn and δn of equation (9) by

α′n = αn, β′n = βn, γ′n = γn for n = 0, 1
and

δ′n ≡ 0,
α′n ≡ αn,
β′n = βn − α′n−1δn/γ′n−1,
γ′n = γn − β′n−1δn/γ′n−1, for n ≥ 2.

(17)

The ratios of successive terms of the solution eigenvector {an : n = 0, 1, 2 . . .} is given by the
continued fraction

an+1

an
= −

γ′n+1

β′n+1 −
α′n+1γ

′
n+2

β′n+2 −
α′n+2γ

′
n+3

β′n+3 − · · ·
(18)

9



and the quasinormal frequencies of the Reissner-Nordströ black hole are then the solutions to the
(implicit) characteristic continued fraction equation

0 = β′0 −
α′0γ

′
1

β′1 −
α′1γ

′
2

β′2 −
α′2γ

′
3

β′3 − · · ·
(19)

or any of its inversions. As usual, the zeroes of the continued fraction are found using Minpack
routine HYBRD.[45] After a quasinormal eigenfrequency is found as a solution to equation (19)
the corresponding eigenvector {an} is found by first generating a0 through aq−1 (where q is
the quasinormal overtone index, q = 1 at the fundamental frequency) by forward recursion on
equations (16), applying equation (18) at suitably large N , then generating the remainder of the an
by downward recursion from this ratio and matching with the values at n = q − 1.

4.1 Convergence

Surprisingly, the tridiagonalized problem (16) admits to asymptotic analysis of the solution vector
{an} despite the recursive nature of the elimination step (17). Indeed, if one divides the defining
equations (9) by n2 and writes the asymptotic (large n) forms of the tridiagonalized recurrence
coefficients as

α′n ∼ r+(1 + u/n)
β′n ∼ −r+(2 + v/n)
γ′n ∼ r+(1 + w/n) ,

(20)

substitutes these expressions into equations (16) and (17) and solves for u, v, and w, one finds that

u = 2(b+ 1)
v = 2 + 4(ρr+ + b)
w = 2(ρ+ b) .

(21)

The analysis involving equations (42–46) of reference [28] can then be followed to yield the desired
result,

lim
n→∞

an+1

an
∼ 1± [2ρ(r+ − r−)]

1
2

n
1
2

+
2ρr+ − 3

4

n
+ . . . (22)

as a simple generalization of equation (11) to the case of non-zero charge. (Details are given in
Appendix A.) This result confirms our intuitive guess that convergence of the series

∑
an will

become much less rapid as Q→ 1/2 and r− → r+, and allows an error analysis analogous to that
of equations (12) – (15). However, as a practical matter thisQ dependence is not a great restriction:
even for Q as large as 0.49995 we find r+− r− =

√
1− 4Q2 ∼ 0.014 , so that a sufficient number

of terms can readily be retained even for computations quite close to the limit of maximal charge.
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5 quasinormal frequencies

Some representative Reissner-Nordström quasinormal frequencies for multipoles l = 1 and l = 2
are listed in table 1.

Q l = 2, i = 2 l = 2, i = 1 Q l = 1, i = 1

n=0
0.00 45 (-0.17792, -0.74734) 39 (-0.19001, -0.91519) 0.00 74 (-0.18498, -0.49653)
wkbj (-0.17844, -0.74632) (-0.19012, -0.91426) 0.10 75 (-0.18580, -0.50295)
0.20 48 (-0.17880, -0.75687) 41 (-0.19288, -0.95985) 0.20 76 (-0.18831, -0.52384)

(-0.17928, -0.75584) (-0.19296, -0.95896) 0.30 80 (-0.19241, -0.56551)
0.40 63 (-0.17929, -0.80243) 48 (-0.19814, -1.14026) 0.40 93 (-0.19654, -0.64699)

(-0.17968, -0.80108) (-0.19798, -1.13952) 0.45 98 (-0.19487, -0.72165)
0.495 146 (-0.16853, -0.85859) 92 (-0.17728, -1.38550) 0.495 150 (-0.17420, -0.84279)

(-0.17064, -0.85660) (-0.17834, -1.38500) 0.4975 174 (-0.17086, -0.85253)
0.4995 244 (-0.16708, -0.86227) 145 (-0.17255, -1.40620) 0.4995 228 (-0.16776, -0.86062)
0.49995 313 (-0.16729, -0.86196) 149 (-0.17241, -1.40815) 0.49995 218 (-0.16686, -0.86283)
n=1
0.00 81 (-0.54783, -0.69342) 63 (-0.58142, -0.87308) 0.00 181 (-0.58733, -0.42903)
wkbj (-0.54982, -0.69204) (-0.58194, -0.87166) 0.10 176 (-0.58935, -0.43626)
0.20 84 (-0.55025, -0.70346) 65 (-0.58938, -0.92000) 0.20 175 (-0.59533, -0.45977)

(-0.55218, -0.70196) (-0.58968, -0.91856) 0.30 181 (-0.60450, -0.50661)
0.40 106 (-0.54989, -0.75381) 75 (-0.60212, -1.10999) 0.40 198 (-0.61070, -0.59802)

(-0.55250, -0.75096) (-0.60136, -1.10812) 0.45 180 (-0.59979, -0.68087)
0.495 197 (-0.51403, -0.80704) 111 (-0.53501, -1.35732) 0.495 220 (-0.52932, -0.79794)

(-0.52868, -0.80676) (-0.54230, -1.35788) 0.4975 241 (-0.52000, -0.80390)
0.4995 257 (-0.51030, -0.80875) 136 (-0.52144, -1.37419) 0.4995 260 (-0.51197, -0.80812)
0.49995 190 (-0.51411, -0.78618) 104 (-0.52512, -1.36630) 0.49995 98 (-0.51941, -0.81204)
n=2
0.00 154 (-0.95655, -0.60211) 105 (-1.00318, -0.80237) 0.00 446 (-1.05038, -0.34955)
wkbj (-0.94212, -0.60586) (-0.99172, -0.80464) 0.10 432 (-1.05277, -0.35746)
0.20 161 (-0.95988, -0.61285) 106 (-1.01430, -0.85296) 0.20 410 (-1.05955, -0.38317)

(-0.94584, -0.61636) (-1.00368, -0.85480) 0.30 389 (-1.06839, -0.43432)
0.40 185 (-0.95313, -0.67034) 113 (-1.02631, -1.05824) 0.40 461 (-1.06595, -0.53404)

(-0.94548, -0.67168) (-1.01808, -1.05680) 0.45 331 (-1.03546, -0.62268)
0.495 296 (-0.88715, -0.70783) 138 (-0.90236, -1.30191) 0.495 328 (-0.90548, -0.71043)

(-0.91352, -0.73436) (-0.92216, -1.31406) 0.4975 355 (-0.89385, -0.70917)
0.4995 292 (-0.88407, -0.70703) 121 (-0.88160, -1.31135) 0.4995 301 (-0.88520, -0.70694)

Table 1: Reissner-Nordström quasinormal frequency parameter values (ρ = −iω) for the
fundamental (n = 0) and two lowest overtones. The quasinormal frequencies appear as complex
conjugate pairs in ρ; we list only the Im(ρ) < 0 root. The integer listed at the left of each frequency
value is the number of terms used by the continued fraction algorithm to obtain a convergence
accuracy of 1.2E-09. The third-order WKBJ values were obtained from reference [22]. Listed
are frequencies that correspond to gravitational quadrupole (l = 2, i = 2), electric quadrupole
(l = 2, i = 1), and electric dipole (l = 1, i = 1) perturbations at the Q = 0 limit. A double
precision version of MINPACK[39] routine HYBRD was used for the root search with error tolerance
set to 1.0E-05. All computations were done in double precision (53 bit mantissa) FORTRAN on a
Sun Microsystems 3/140 computer.
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Since expressions (3) – (9) are each real whenever ρ is real, the Schwartz reflection principle
ensures the quasinormal frequencies will appear as complex conjugate pairs in the frequency
parameter ρ. (See references [21] and [22] for further discussion.)

Trajectory plots of the quasinormal frequencies (magnitudes of the real and imaginary parts
parameterized by Q) are shown in figure 1.

Figure 1: Spacetime diagram of the characteristic-value problem in characteristic (u, v) coordi-
nates.

Our results confirm that the accuracy of the third order WKBJ quasinormal frequency values
tabulated by Kokkotas and Schutz[22] can, for a given overtone index, be estimated simply by
comparing the WKBJ result with the continued fraction result at the Schwarzschild limit. (Note
that Kokkotas and Schutz use a normalization of M = 1, whereas we have used M = 1/2.)
Agreement between the two methods for the fundamental quadrupole modes is better than a few
parts per thousand for Q less than ≈ 0.4, and becomes only slightly worse for larger Q. Our
continued fraction results agree with the numerical integration results given by Kokkotas and
Schutz to within the number of digits supplied for the fundamental mode and at theQ = 0 limit for
the higher overtones, but there is mild discrepancy (∼ few percent) with the numerical results as
Q increases for harmonic index other than zero. In these cases the agreement between the WKBJ
and continued fraction results is usually better than the agreement of either with the numerical
integration.
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6 quasinormal mode wavefunctions

The degree to which analytic information appears explicitly factored in representation (3) of the
quasinormal mode wavefunction Z(−)

i (r) can be both useful and deceptive. As an example we
observe the behavior of the function as the charge parameter Q approaches its allowed maxi-
mum value 1/2. At maximum Q the two horizons coalesce to form a confluent singularity in
the wave equation, and the tortoise coordinate takes on a somewhat different functional form;
r∗ = r + 2rc ln(r − rc) − r2c/(r − rc), where rc is the confluent horizon (an unrealizable naked
singularity) located at rc = 1/2 in our units. As mentioned previously, power series expansions
around confluent singular points usually either fail completely or are at best asymptotic. In some
cases a judicious choice of Neumann series may be convergent – see reference [28] for an example.
There is also no apparent reason why the WKBJ approximation should not remain valid at maximal
Q, although this has yet to be demonstrated.

Returning to our example, we first factor the identifiably radiative terms from expression (3).
Specifically, since Re(ρ) < 0 for quasinormal frequencies, the
r+e

2ρr+(r+ − r−)
2ρ−1 term in equation (7) becomes infinite as Q, r−, and r+ all approach their

limiting value 1/2. This could lead to the mistaken conclusion that the transmission coefficient
tends uniformly to zero for maximal Q, which would be at variance both with common sense
and with the extensive reflection/transmission coefficient calculations made by Gunter.[9] What
actually happens is that the increase at large r∗ due to the r+e2ρr+(r+ − r−)

2ρ−1 term is exactly
cancelled by a concurrent decrease in the value of the series

∑∞
0 anu

n. This behavior is illustrated
in figures 2 and 3, wherein the complete quasinormal mode wavefunction generated by expression
(3) is divided by exp(−ρ|r∗|). Apart from the cusp artifact at r∗ = 0 contributed by the denomi-
nator, this quotient is quite uniform and the ratio of ingoing (at the horizon) to outgoing (at spatial
infinity) flux remains, for these low-lying modes, close to unity for all Q.
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Figure 2: Salient components of the fundamental quadrupole quasinormal mode wavefunction for
i = 2 (purely gravitational perturbation at Schwarzschild limit) for different values ofQ: (a)Q = 0
(b) Q = 0.4900 (c) Q = 0.4990 (d) Q = 0.4999. The solid and dashed lines are the magnitude
and phase of expression 3 multiplied by exp(ρ|r∗|). Dash-dot-dash and dash-dot-dot-dot-dash are
respectively the magnitude and phase of

∑
anu

n. Dotted lines denote the odd-parity potential and
the phase limits; the phases have been scaled 4π for convenience. The minimum r value plotted
corresponds to the event horizon r+.
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Figure 3: Salient components of the first overtone i = 2 quadrupole quasinormal mode
wavefunction. Description of curves same as for Figure 2.

7 Conclusion

The algorithms presented here, as are those given previously for Kerr black holes, are straightfor-
ward and readily implemented should additional quasinormal frequency values or wavefunctions
be desired. As one remark, we did not attempt to track the eighth i = 2 quadrupole overtone (i.e.,
n = 8 where n = 0 is the fundamental) as a function of charge. This frequency can be rigorously
shown to reduce to the corresponding algebraically special mode’s frequency at the Schwarzschild
limit,[46] but this demonstration and the corresponding relationship between the quasinormal and
algebraically special modes (they are not the same) is beyond the scope of the present investigation.

We conclude with the following observations: The quasinormal modes of charged black holes,
if they are of any astrophysical interest at all, are likely to be so only for holes that are also rapidly
rotating. And the master perturbation equations for the Kerr-Newman black hole (chapter 11,
equations 145–146 of reference [10]) apparently do not separate. It is likely this non-separability
is an unavoidable consequence of Coulomb repulsion destroying the oblate spheroidal symmetry
of an uncharged Kerr black hole. But nonseparability need no longer impede the solution of these
equations, for the major significance of the present study will be seen to lie, not in its physical
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results, but in its demonstration of the validity of matrix determinant methods for solving radiative
boundary condition problems typified by the quasinormal ringing of Reissner-Nordstróm black
holes – problems involving banded matrices of order greater than three.

As a result, we feel certain a non-separable eigenfunction expansion can be made for the rele-
vant Kerr-Newman field quantities, and that a spectral or pseudospectral method can be employed
for their solution. The key modification to the usual spectral approach will be the introduction of
a determinant-zeroing step to enforce boundary conditions and convergence of the series. This ap-
proach need not be restricted to the determination of quasinormal frequencies and modes: it could
also be applied to expansions in non-separable series of angular functions and Bessel or Coulomb
wavefunctions (of adjustable order or phase parameter) in much the same way as was demonstrated
for the separable Regge-Wheeler and Generalized Spheroidal wavefunctions in references [16] and
[28]. (Such an approach could be termed a pseudospectral Neumann method in the language of
reference [47].) The radiative boundary condition at spatial infinity could then be enforced, or the
ingoing and outgoing components clearly identified, at any complex frequency for a wide variety
of partial differential wave equations. The possible applications of this proposed technique (and
some obvious variations) to charged rotating black holes, and to scattering problems in acoustics
and electromagnetism, will be subjects of future investigation.
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A A proof of equation 22

First consider the three-term recurrence relation that reduces from equations (8) in the Schwarzschild
limit when the δn are zero. We are interested in its behavior for large n. Scale the recurrence
coefficients by n2 and write them as

αn ∼ 1 + u/n

βn ∼ −(2 + v/n) (23)
γn ∼ 1 + w/n

where u = 2(ρ+ 1), v = 8ρ+ 2, and w = 4ρ. Divide equation (8) by n2 and write it as

(1 + u/n)
an+1

an
− (2 + v/n) + (1 + w/n)

an−1
an

= 0 . (24)

It is clear that limn→∞ an+1/an = 1; thus more information is needed to establish the convergence
of
∑∞

0 an. Therefore expand the ratio of successive terms in negative powers of
√
n,

an+1

an
≈ 1 +

a√
n
+
b

n
+ . . . (25)

and substitute back into equation (24):(
1 +

u

n

)(
1 +

a√
n
+
b

n

)
−
(
2 +

v

n

)
+
(
1 +

w

n

)(
1− a√

n
+
a2 − b
n

+
2ab− a/2− a3

n3/2

)
≈ 0 . (26)

Perform the multiplications and retain terms through O(n−3/2). The coefficent of each power of
n−1/2 must vanish independently, hence

a2 = v − u− w = 2ρ and
b = 1/4 + v/2− u = 2ρ− 3/4 ,

(27)

which is the result cited at equation (11).
When Q 6= 0 and the recurrence relation involves four terms, we begin with the reasonable

ansatz that the ratios of successive terms an+1/an will still go to unity at large n. The ansatz is
reasonable because the series

∑∞
0 anu

n is the solution of a differential equation which has regular
singular points at u = 0, r+/r−, and −∞, and an irregular singular point at u = 1. It is reasonable
to assume the radius of convergence of such a series solution is exactly one, i.e.,

∑∞
0 anu

n exists
for all u such that |u| ≤ 1, with equality holding when ρ is an eigenfrequency. If this is true then
equations of the same form as (23-26) must hold using the primed coefficients of equations (16)
and (17). To see this first let

α′n ∼ κ(1 + u/n)

β′n ∼ −κ(2 + v/n) (28)
γ′n ∼ κ(1 + w/n) .

The constant κ is evaluated by inspecting equation (9): κ must equal r+ (and u = 2b + 2) since
α′n = αn for all n. The remainder of our proof consists of an explicit computation of v and w. We
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first compute δn/γ′n−1. The denominator is obtained by multiplying the last of equations (28) by
n2,

γ′n ∼ r+(n
2 + wn) ,

from which
γ′n−1 ∼ r+[n

2 + (w − 2)n] ,

or, dividing again by n2,
γ′n−1 ∼ r+[1 + (w − 2)/n] .

Retrieve δn from equation (9),

δn ∼ r−[−1 + 2(3− ρ− b)/n] ,

and divide the two to obtain to O(1/n)

δn
γ′n−1

∼ −r−
r+

(
1 +

2ρ+ 2b− w − 4

n

)
. (29)

We substitute this result together with the defining equation (9) for βn into the third of equations
(17) to get

β′n = βn − α′n−1δn/γ′n−1 (30)
' −r+{2n2 + [2 + 8b− r−(6b+ 2ρ− w)/r+]n} , (31)

from which we identify v in terms of w as

v = 2 + 8b− r−(6b+ 2ρ− w)/r+ . (32)

Similarly,

γ′n = γn − β′n−1δn/γ′n−1
' r+{n2 + [2ρ(1 + 2r−) + 2b− 4r−(2b+ ρ)/r+

+ 2r2−(3b+ ρ)/r2+ + w(2r−/r+ − r2−/r2+)]n} . (33)

The term in square brackets is identified as an explicit expression for w, which upon simplification
yields the desired result,

w = 2(ρ+ b) , (34)

which we can substitute back into (32) to get

v = 2 + 4ρr+ + 4b . (35)

Last, equations (27) give

a2 = v − u− w = 2ρ(r+ − r−) and
b = 1/4 + v/2− u = 2ρr+ − 3/4 ,

(36)

which reduce to the three-term Schwarzschild result (27) in the limit r− → 0 and r+ → 1. This
completes the proof.
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Figure and Table captions

table 1: caption: Reissner-Nordström quasinormal frequency parameter values
(ρ = −iω) for the fundamental (n = 0) and two lowest overtones. The quasinormal
frequencies appear as complex conjugate pairs in ρ; we list only the Im(ρ) < 0 root.
The integer listed at the left of each frequency value is the number of terms used by
the continued fraction algorithm to obtain a convergence accuracy of 1.2E-09. The
third-order WKBJ values were obtained from reference [22]. Listed are frequencies
that correspond to gravitational quadrupole (l = 2, i = 2), electric quadrupole (l =
2, i = 1), and electric dipole (l = 1, i = 1) perturbations at the Q = 0 limit. A double
precision version of MINPACK[39] routine HYBRD was used for the root search with
error tolerance set to 1.0E-05. All computations were done in double precision (53 bit
mantissa) FORTRAN on a Sun Microsystems 3/140 computer.

figure 1: title: Quasinormal frequencies for l=2, i=2.

x-axis: Re(ω)

y-axis: -Im(ω)

caption: Quasinormal frequency trajectories for the i=2 quadrupole mode parameterized by
the charge Q. Fundamental mode appears at lower right, fourth overtone at upper left.
Tick marks (from right to left) correspond to Q = 0,0.2,0.3,0.4,0.45,0.49, and 0.499.
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figure 2: title: Figure 2. fundamental i = 2 quadrupole mode for increasing values of Q.

x-axis: r
y-axis: magnitude and phase

caption: Salient components of the fundamental quadrupole quasinormal mode wavefunc-
tion for i = 2 (purely gravitational perturbation at Schwarzschild limit) for different
values of Q: (a) Q = 0 (b) Q = 0.4900 (c) Q = 0.4990 (d) Q = 0.4999. The solid
and dashed lines are the magnitude and phase of expression 3 multiplied by exp(ρ|r∗|).
Dash-dot-dash and dash-dot-dot-dot-dash are respectively the magnitude and phase of∑
anu

n. Dotted lines denote the odd-parity potential and the phase limits; the phases
have been scaled 4π for convenience. The minimum r value plotted corresponds to the
event horizon r+.

figure 3: title: Figure 3. first overtone i = 2 quadrupole mode for increasing values of Q.

x-axis: r
y-axis: magnitude and phase

caption: Salient components of the first overtone i = 2 quadrupole quasinormal mode
wavefunction. Description of curves same as for Figure 2.
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Table 1.

Q l = 2, i = 2 l = 2, i = 1 Q l = 1, i = 1
n=0
0.00 45 (-0.17792, -0.74734) 39 (-0.19001, -0.91519) 0.00 74 (-0.18498, -0.49653)
wkbj (-0.17844, -0.74632) (-0.19012, -0.91426) 0.10 75 (-0.18580, -0.50295)
0.20 48 (-0.17880, -0.75687) 41 (-0.19288, -0.95985) 0.20 76 (-0.18831, -0.52384)

(-0.17928, -0.75584) (-0.19296, -0.95896) 0.30 80 (-0.19241, -0.56551)
0.40 63 (-0.17929, -0.80243) 48 (-0.19814, -1.14026) 0.40 93 (-0.19654, -0.64699)

(-0.17968, -0.80108) (-0.19798, -1.13952) 0.45 98 (-0.19487, -0.72165)
0.495 146 (-0.16853, -0.85859) 92 (-0.17728, -1.38550) 0.495 150 (-0.17420, -0.84279)

(-0.17064, -0.85660) (-0.17834, -1.38500) 0.4975 174 (-0.17086, -0.85253)
0.4995 244 (-0.16708, -0.86227) 145 (-0.17255, -1.40620) 0.4995 228 (-0.16776, -0.86062)
0.49995 313 (-0.16729, -0.86196) 149 (-0.17241, -1.40815) 0.49995 218 (-0.16686, -0.86283)
n=1
0.00 81 (-0.54783, -0.69342) 63 (-0.58142, -0.87308) 0.00 181 (-0.58733, -0.42903)
wkbj (-0.54982, -0.69204) (-0.58194, -0.87166) 0.10 176 (-0.58935, -0.43626)
0.20 84 (-0.55025, -0.70346) 65 (-0.58938, -0.92000) 0.20 175 (-0.59533, -0.45977)

(-0.55218, -0.70196) (-0.58968, -0.91856) 0.30 181 (-0.60450, -0.50661)
0.40 106 (-0.54989, -0.75381) 75 (-0.60212, -1.10999) 0.40 198 (-0.61070, -0.59802)

(-0.55250, -0.75096) (-0.60136, -1.10812) 0.45 180 (-0.59979, -0.68087)
0.495 197 (-0.51403, -0.80704) 111 (-0.53501, -1.35732) 0.495 220 (-0.52932, -0.79794)

(-0.52868, -0.80676) (-0.54230, -1.35788) 0.4975 241 (-0.52000, -0.80390)
0.4995 257 (-0.51030, -0.80875) 136 (-0.52144, -1.37419) 0.4995 260 (-0.51197, -0.80812)
0.49995 190 (-0.51411, -0.78618) 104 (-0.52512, -1.36630) 0.49995 98 (-0.51941, -0.81204)
n=2
0.00 154 (-0.95655, -0.60211) 105 (-1.00318, -0.80237) 0.00 446 (-1.05038, -0.34955)
wkbj (-0.94212, -0.60586) (-0.99172, -0.80464) 0.10 432 (-1.05277, -0.35746)
0.20 161 (-0.95988, -0.61285) 106 (-1.01430, -0.85296) 0.20 410 (-1.05955, -0.38317)

(-0.94584, -0.61636) (-1.00368, -0.85480) 0.30 389 (-1.06839, -0.43432)
0.40 185 (-0.95313, -0.67034) 113 (-1.02631, -1.05824) 0.40 461 (-1.06595, -0.53404)

(-0.94548, -0.67168) (-1.01808, -1.05680) 0.45 331 (-1.03546, -0.62268)
0.495 296 (-0.88715, -0.70783) 138 (-0.90236, -1.30191) 0.495 328 (-0.90548, -0.71043)

(-0.91352, -0.73436) (-0.92216, -1.31406) 0.4975 355 (-0.89385, -0.70917)
0.4995 292 (-0.88407, -0.70703) 121 (-0.88160, -1.31135) 0.4995 301 (-0.88520, -0.70694)
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