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INTRODUCTION

The continued-fraction method affords a stable, accu-
rate, and convergent technique for computing quasinor-
mal frequencies and modes. A review seems appropri-
ate however, particularly in view of some apparent un-
certainty concerning the method and conflicting JWKB
results for the quasinormal frequencies. As instances,
Anderson and Price [1] assert “Three term recursion re-
lations can be treated by continued-fraction methods.
With such a method, Leaver showed that the quasinor-
mal frequencies are those complex values of ω for which
the continued-fractions converge. He then uses the con-
vergence of the continued-fractions as the basis for a pre-
cise and stable computation scheme for the quasinormal
frequencies,” while Guinn, Will, Kojima, and Schutz [2]
suggest “The possibility that Leaver’s calculation gives
wrong values for the real parts of the frequencies must
be considered, especially in view of the considerable del-
icacy of the numerical techniques he used to evaluate his
continued-fractions; on the other hand, we have looked
at this and not found any obvious flaws.” Possible weak-
nesses in the JWKB analysis of Guinn et al. are discussed
elsewhere [3]; here we take the opportunity to clarify the
Anderson-Price statement concerning convergence, and
other important continued-fraction issues.

THE CONTINUED-FRACTION METHOD FOR
SCHWARZSCHILD QUASINORMAL

FREQUENCIES AND MODES

Derivation and convergence

In units where c = G = 2M = 1 and with an exp(−iωt)
time dependence, the Regge-Wheeler equation is

r(r− 1)ψ,rr +ψ,r +

[
ω2r3

r − 1
− l(l + 1) +

ε

r

]
ψ = 0 , (1)

where the field spin parameter ε = −1, 0, 3 for scalar,
electromagnetic, and gravitational perturbations. The
solution that is in-going at the event horizon may be

written (cf. Ref. [4])

ψl = (r − 1)ρr−2ρe−ρ(r−1)
∞∑
n=0

an(1− 1/r)n , (2)

where the frequency parameter ρ = −iω and the expan-
sion coefficients an are defined by the three-term recur-
rence relation

α0a1 + β0a0 = 0 (3)

αnan+1 + βnan + γnan−1 = 0 n = 1, 2, . . . . (4)

The recurrence coefficients αn, βn γn are explicit func-
tions of the frequency ρ, multipole moment l, and field
spin parameter ε:

αn = n2 + (2ρ+ 2)n+ 2ρ+ 1 ,

βn = −[2n2 + (8ρ+ 2)n+ 8ρ2 + 4ρ+ l(l + 1)− ε] ,(5)

γn = n2 + 4ρn+ 4ρ2 − ε− 1 .

The quasinormal frequencies are then those complex val-
ues of ρ for which the series in Eq. (2) converges uni-
formly as r →∞. The convergence of this series is a sep-
arate issue from the convergence of the continued-fraction

F (ρ) =
−γ1
β1 −

α1γ2
β2 −

α2γ3
β3 −

. . . , (6)

which is an analytic function of the frequency ρ, and is
empirically found to converge for all ρ that are not purely
negative real. (This restriction is related to the absence
of a minimal solution to recurrence equations (4) when
ρ is negative real. See Refs. [4] Eq. (9), and [5] Eqs.
(42)-(46).)

Now, when ρ is a quasinormal eigenfre-
quency ρq, the sequence of expansion coefficients
{an(ρq);n = 0, 1, 2, . . . } is the minimal solution to
recurrence relation (4), and the ratio of the first two
expansion coefficients is equal to the value of this
continued-fraction [5, 6]:

a1(ρq)/a0(ρq) = F (ρq) . (7)

Since this ratio is also given by Eq. (3) for any ρ, we
then have the equation

F (ρq) = −β0(ρq)/α0(ρq) , (8)

which holds whenever ρ is a quasinormal frequency. How-
ever, when ρ is not a quasinormal frequency (and also
not purely negative real), the continued-fraction still con-
verges and the expression

β0(ρ)/α0(ρ) + F (ρ) (9)

is an analytic function of ρ whose zeros are the quasinor-
mal frequencies. Being analytic, expression (9) makes an
ideal target for a numerical root search.
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A variety of methods are available. The minpack [7]
library’s nonlinear root search routine hybrd can handle
multiple equations and unknowns, which is particularly
useful for Kerr black-holes where the eigenfrequency and
angular separation constant are simultaneously sought.
hybrd works well in all cases, but for Schwarzschild and
Reissner-Nordström black-holes the eigenfrequency is the
only unknown and analyticity may be exploited by single-
variable techniques such as Muller’s method [8], used in
routines such as the International Mathematical and Sci-
entific Library’s zanlyt [9]. However, it must be em-
phasized that precision and initial step size control in the
root-search routine are essential: in our double precision
calculations we use an initial step size between 10−6 and
10−8. The standard minpack distribution includes both
single and double precision versions of all routines, and
hybrd affords fine control over step size, thus making it
the nonlinear root-search routine of our personal choice.
(We also obtain identical quasinormal frequency values
using a double precision version of zanlyt, after modi-
fying the code to allow step-size control.) The continued-
fraction itself may be stably evaluated by either of the
algorithms given in Refs. [8] and [10] (also discussed in
[6]); we have used them both with essentially identical
results.

Stability and accuracy

An interesting convergence aspect of series (2) itself
is that when ρ is an eigenfrequency {ρq; q = 0, 1, 2, . . . }
the largest of the expansion coefficients an is approxi-
mately aq, so that for all but the fundamental q = 0
mode, the series coefficients form an increasing sequence
between the first term a0 and approximately aq; uniform
convergence does not set in until after this point. Con-
sequently, it is (approximately) the qth inversion of the
continued-fraction expression (9) that provides the most
stable function for searching for the qth root, i.e., the qth
root is easiest to find numerically, starting with the worst
initial guess and largest initial step size, if the continued-
fraction is first inverted approximately q times [(Ref. [4]
Eq. (14)]. However, the qth quasinormal frequency ρq
remains a solution to (9) regardless of the number of in-
versions, as can be verified by starting the root search
close enough to ρq with a small enough step size.

Regarding accuracy, the selected values for the fun-
damental and first 59 overtone quasinormal frequencies
listed in Ref. [4] were obtained by numerical solution of
Eq. (8) on a computer with a 27-bit floating-point man-
tissa. This corresponds to a maximum of seven decimal
digits. Note the precision is that of the complete complex
quantity; the real parts of the high overtone frequencies,
because of their hundred-fold magnitude difference from
the imaginary parts, possess a few significant figures less
than the imaginary parts. Use of a sequence convergence

acceleration routine limited the number of approximants
needed to compute the highest overtone values to fewer
than 2000, although this speed optimization is not re-
quired on modern workstations and introduced some im-
precision of its own. The continued-fraction was declared
to have converged when the relative contribution of the
last computed approximant became less than one part
in 107, and the root-search acceptance criterion was one
part in 105.

We have recently rerun the program on a DECstation
3100 workstation with 53-bit floating-point mantissa,
without the convergence accelerator. The continued-
fraction and root-search tolerances were set to 10−13 and
10−11 respectively, yielding frequency values to ten or
twelve significant figures. The values of the lowest six
l = 2 quasinormal frequencies listed in Table I of Ref.
[4] remained unchanged, the seventh and eighth changed
in the seventh and sixth significant figures, and values
ten, eleven, and twelve remained unchanged. Frequency
values for overtone indices q = 19 through 59 changed in
the fifth significant figure. The accuracy for l = 3 was
similar, save for those frequencies bracketing the alge-
braically special value, which erred in the fourth signifi-
cant digit. They should read (−0.03795,−19.43212) and
(−0.03100,−20.56340). As a high overtone test, the l = 2
value at q = 399 was found to be (−199.72737,−0.11149).
See Ref. [11] for further discussion of the method.

Validity

An important omission from our original discussions
was proof that the quasinormal mode wave functions con-
structed from (2), with quasinormal frequencies found as
the roots of the continued-fraction expression (9), com-
pletely exclude exponentially decreasing in-going behav-
ior at spatial infinity. At the time we were content with
the observation that, to within the numerical accuracy
of both methods, the quasinormal frequencies computed
by the continued-fraction method agreed with the funda-
mental and lowest overtone values computed by Chan-
drasekhar and Detweiler [12] by direct numerical inte-
gration of the associated Ricatti equation. Since (i) the
continued-fraction expression (9) was derived without ap-
proximation from the exact series representation (2), and
(ii) the zeros of this expression were numerically stable
(i.e., the values of the roots obtained were both indepen-
dent of the number of times the fraction was inverted,
and had the expected behavior as the convergence toler-
ance of the fraction and root search algorithm were var-
ied), “proof” of the validity of the higher overtone values
followed by numerical induction.

In addition, the asymptotic exclusion of in-going wave
behavior from the quasinormal mode wave functions con-
structed from series (2) was also confirmed via the inde-
pendent Coulomb wave function expansion method dis-
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cussed in Ref. [13]. There the Wronskian of the solution
wave functions in-going at the horizon and out-going at
infinity was computed in a small neighborhood of the
fundamental and first five overtone quasinormal frequen-
cies (the program has since been extended to include
overtones six through ten); the Wronskian vanished at
the quasinormal frequencies as required, and those lower-
most six quasinormal modes were shown graphically to
contribute to the complete wave form in a physically rea-
sonable manner.

A more recent analytic continuation argument is that
the wave functions constructed by the continued-fraction
method obviously exclude the corresponding exponen-
tially increasing behavior from the infinity of bound-
state eigenfunctions of the negative inverted potential (a
Stürm-Liouville problem closely related to the bound-
state problem of finite dipoles [14]), and the wave func-
tion expression (2) and continued-fraction (9) are ana-
lytic functions of the potential. Therefore the analytic
asymptotic functional form of the bound-state eigen-
functions should be preserved as the negative poten-
tial is reinverted to regain the Regge-Wheeler potential,
and exclude the now exponentially decreasing asymptotic
term. This can be demonstrated explicitly by tracking
the eigenfrequency dependence as the (complex) quan-
tity A = l(l + 1) is varied from positive to negative real
values, keeping its magnitude constant.

DISCUSSION AND CONCLUSION

Although we have reviewed here the use of continued-
fractions in determining the quasinormal frequencies and
modes of Schwarzschild black-holes, the method has been
shown appropriate for Kerr and Reissner-Nordström
black-holes as well [4, 11]. The charged-rotating Kerr-
Newman black-hole has considerable complications. The
perturbation equations for the Kerr-Newman black-hole
have thus far been separated only for single-spin pertur-
bations; i.e., one of the Einstein or Maxwell fields is held
fixed while the other is perturbed. This separation was
effected by Dudley and Finley [15]; in the Kerr-Newman
limit their radial equation (5.18b) reduces to a spheroidal
wave equation, while their angular equation (5.18a) ap-
pears to be ellipsoidal for nonzero electric charge. If
this is the case, the angular equation may be solved by
methods similar to the matrix-determinant or continued-
fraction methods discussed in [11], while the radial equa-
tion and the coupled eigenfrequency/angular separation
constant problem may be treated as in the Kerr case
[4]. It must be stressed, however, that the single-spin
perturbations are not physically realizable [15, 16]; the
actual quasinormal frequencies and modes of the Kerr-
Newman black-hole will most likely be found only by
solving, e.g., Bose’s [17] coupled equations (23) and (24)
through matrix-determinant methods such as those dis-

cussed at the conclusion of Ref. [11].

It was showed in Ref. [13] that the physical significance
of high-overtone quasinormal modes can most likely be
assessed only when the corresponding Wronskian deriva-
tive can also be evaluated; the Coulomb wave function
expansion of the outgoing solution was found to be a
suitable tool. Seidel [18] has recently modeled stellar
collapse waveforms that suggest the contributions from
at least the first overtone mode may be observable in ad-
dition to that from the fundamental. His results are not
conclusive, however, and it would be interesting to com-
pare his integrated waveforms in the asymptotic region
with those propagated by the Green’s function methods
of Ref. [13] Sec. IV.

Andersson [19] has recently verified the values of the
lowest ten l = 2 Schwarzschild gravitational quasinormal
overtones by his phase-amplitude method (save for the
purely imaginary eighth overtone, for which his method
apparently does not apply); he should publish shortly.
Among other results he finds that the quasinormal fre-
quency values obtained via the phase-integral approxi-
mation are more accurate when the method is applied
to Zerilli’s potential than when applied to the Regge-
Wheeler potential, even though the exact value of the
quasinormal frequencies is the same for each. This may
be relevant to the recently attempted application by
Guinn et al. [2] of the JWKB method to high-order
overtones. While it is perhaps premature to hope that
the Anderson-Price analysis of the intertwining between
these and similarly related potentials will eventually pro-
vide better insight into the applicability of the phase in-
tegral and JWKB approximations to quasinormal mode-
type problems, it is difficult to imagine their article be-
ing more timely. And while it seems likely continued-
fraction/matrix-determinant methods currently afford
the most accurate and reliable means to compute quasi-
normal frequencies and modes for all physically realizable
values of the black-hole parameters, there is no reason to
suspect they will not be augmented (or even supplanted)
by other methods in the future [20].
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